AD_A25 9 I'echnicai Repdrt
lilllll'llllllllllllllllhlllIIHIIIIIIIHII; CMU/SEL92-TR-21

ESC-TR-92-021

R

ez Camegie-Mellon University

n..m

- Software Engineering Institute

Software Effort and Schedule Measurement:
A Framework for Counting Staff-Hours
and Reporting Schedule Information

‘ Wolfhart B. Goethert

Elizabeth K. Bailey

Mary B. Busby
with the Effort and Schedule Subgroup

of the Software Metrics Definition Working Group
’ ‘ and the Software Process Measurement Project Team

September 1992

¢ ¢ o DTIC
* S ¢

ECO 91992

4 \ 4 ¢

¢ o o \%\

4 ' "92-31128
(RN CR A oY

\ 4

Thas S e LAt ont
Cengin 4 e b ot e

Lregt e b anibear e

ogreeny i Mallee L, [
e Lo e

LR I A AN

ey Cren g et

[T

e
P

NI

gk O e o B,

i
(TN TSTERT RIS

At Py
‘o
. .
N
Cotena oy .
o e

T A T N R CTI RS I

'

U PR TN I R S TP

e N e e e .
Pyl st g i e

R TS TS I I IS

T AT

ITRSN [

[Lo

1

S

Technical Report

CMU/SEI-92-TR-21
ESC-TR-92-021
September 1992

Software Effort and Schedule Measurement:
A Framework for Counting Staff-Hours
and Reporting Schedule Information

Wolfhart B. Goethert
Elizabeth K. Bailey
Mary B. Busby

with the Effort and Schedule Subgroup of the Software Metrics Definition Working Group
and the Software Process Measurement Project Team

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEl Joint Program Office

ESC/AVS

Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

Accession Por

FOR THE COMMANDER TS GRAAI 4
DTIC TAB a
: Unsnnounced d
ﬂ !i : 4 Jusiification
Thomas R. Miller, Lt Col, USAF By
SEl Joint Program Office | Distributicn/

Avaflaoxli*v Codes
(Av» {1 endsor

\l Spac ias

Dist

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.
Copyright © 1992 by Carnegie Mellon University.

This document is available through the Defense Technical information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personne! and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Copies of this document are also available from Research Access, Inc., 3400 Forbes Avenue, Suite 302, Pittsburgh, PA 15213,

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

List of Figures

Preface

Acknowledgments

1.

Introduction

1.1. Scope

1.2. Ovjective and Audience

1.3. The Software Measurement Environment

Defining a Framework for Software Effort Measurement
2.1. Staff-Hour Definition Checklist

2.2. Supplemental Information Forms

2.3. Reporting Forms

Understanding Staff-Hour Checklist Attributes and Values
3.1. Type of Labor
3.2. Hour Information
3.3. Employment Class
3.4. Labor Class
3.4.1. Software management
3.4.2. Technical analysts and designers
3.4.3. Programmer
3.4.4. Test personnel
3.4.5. Software quality assurance
3.4.6. Software configuration management
3.4.7. Program librarian
3.4.8. Database administrator
3.4.9. Documentation/publications
3.4.10.Training personnel
3.4.11.Support staff
3.5. Activity
3.6. Product-Level Functions
3.6.1. CSCi-level functions (major functional element)
3.6.2. Build-level functions (customer release)
3.6.3. System-level functions

Using Supplemental Staff-Hour Information Form
4.1. Hour Information

4.2. Labor Class

4.3. Product-Level Functions

Using Forms for Collecting and Reporting Staff-Hour
Measurement Resuits

Defining a Framework for Schedule Definition Measurement

vii

OO PDNO==

11

13
14
16
17
17
18
18
18
19
19
19

20
<0
21
21

25
26

29

30

33
37

CMU/SEI-92-TR-21

6.1. Why Include Schedule in the Core Set?
6.2. Dates of Milestones and Deliverables
6.3. Progress Measures

7. Meeting the Needs of Different Users
7.1. To Prescribe
7.1.1. To specify
7.1.2. To request data elements to be reported
7.2. To Describe
7.2.1. Ongoing projects
7.2.2. After the fact

8. Recommendations

8.1. Ongoing Projects

8.2. New Projects

8.3. Atthe End of All Projects

8.4. Recommended Staff-Hour Definition

8.5. Schedule Recommendations for the Acquisition Program Manager
8.5.1. Dates of reviews/audits/deliverables
8.5.2. Progress measures

8.6. Schedule Recommendations for the Cost Analyst or the

Administrator of a Central Measurement Database
8.7. Schedule Recommendations for Process Improvement Personnel

References

Appendix A: Acronyms and Terms
A.1. Acronyms
A2. Terms Used

Appendix B: Background
B.1. Origins of the Report
B.2. Why Staff-Hours?
B.3. Source of Staff-Hours

Appendix C: Using Measurement Results—Illustrations and
Examples
C.1. Noncumulative Effort Distribution Example
C.1.1. Effort profile for total staff-hours only
C.1.2. Effort profile for each build and CSCI
C.2. Productivity Trend Example

Appendix D: Tailoring Schedule Checklist for Progress or Status
information
D.1. MIL-STD-2167A
D.2. ARMY STEP Set of Measures
D.3. Air Force Pamphlet 800-48
D4. MITRE

Appendix E: Checklists and Forms for Reproduction

37
38
49

55
56
56
56
56
57
57

59
59
59
60
60
65
65
65

66
67

69

71
71
72

73
73
73
74

77
77
77
82
85

89
89
91
g2
93

95

H CMU/SEI-92-TR-21

Figure 2-1
Figure 2-2

Figure 2-3
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 4-1
Figure 5-1
Figure 5-2
Figure 6-1
Figure 6-2
Figure 6-3

Figure 6-4

Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11
Figure 7-1
Figure 8-1
Figure B-i
Figure C-1

List of Figures

Example of Multiple Report Specifications
Interrelationship of Staff-Hour Definition and Report
Specification

Example of Completed Staff-Hour Definition Checklist
The Type of Labor Attribute

The Hour Information Attribute

The Employment Class Attribute

The Labor Class Attribute

The Activity Attribute

The CSCI-Level Functions Attribute

The Build-Level Functions Attribute

The System-Level Functions Attribute

Supplemental Information Form

Reporting Concept

Example Reporting Form for CSCI Development
Schedule Definition Checklist, Page 1

Schedule Definition Checklist, Page 2

Example of Completed Schedule Definition Checklist,
Page 1

Example of Completed Schedule Definition Checklist,
Page 2 |

Example of a Report Form for System-Level Milestone Dates
Example of Report Form for CSCI-Level Milestone Dates
Example of Report Form for System-Level Deliverables
Report Form for CSCI-Level Deliverables

Idealized Rate of Unit Completion

Schedule Definition Checklist, Progress/Status Information
Report Form for Progress Information

Use of Forms

Recommended Staff-Hour Definition
Cost-Account-to-Contract-WBS Relationship

Example of a Completed Staff-Hour Definition Checklist

12
13
14
16
21

25
26
31

35

& 8

BREB28&588&R

76
78

CMU/SEI-92-TR-21

Figure C-2

Figure C-3
Figure C-4

Figure C-5
Figure C-6
Figure C-7
Figure C-8
Figure C-9
Figure C-10
Figure D-1

Figure D-2
Figure D-3

Figure D-4

Example of an Effort Profile for Total System Expenditure by
Month

Example of a Cumulative Effort Profile

Example of a Staff-Hour Definition Checklist for System,
Builds, and CSCls

Example of a Planned Effort Profile by CSC!

Example of a Planned Cumulative Effort Profile

Example of a Planned vs. Actual Cumulative Effort Profile
Example of a Planned vs. Actual Expenditure for Each CSCI
Example of a Productivity Staff-Hour Definition Checklist
Example of a Productivity Trend

Schedule Definition Checklist, Progress/Status Information
(MIL-STD-2167A)

Schedule Definition Checklist, Progress/Status Information
(STEP)

Schedule Definition Checklist, Progress/Status Information
(AF Pamphlet 800-48)

Schedule Definition Checklist, Progress/Status Information
(MITRE)

81
82

83
83
84
84
85
86
87

90

91

92

93

CMU/SEI-92-TR-21

Preface

In 1989, the Software Engineering Institute (SEl) began an effort to promote the use of
measurement in the engineering, management, and acquisition of software systems. We
believed that this was something that required participation from many members of the
software community to be successful. As part of the effort, a steering committee was formed
to provide technical guidance and to increase public awareness of the benefits of process
and product measurements. Based on advice from the steering committee, two working
groups were formed: one for software acquisition metrics and the other for software metrics
definition. The first of these working groups was asked to identify a basic set of measures
for use by government agencies that acquire software through contracted development
efforts. The second was asked to construct measurement definitions and guidelines for
organizations that produce or support software systems, and to give specific attention to
measures of size, quality, effort, and schedule.

Since 1989, more than sixty representatives from industry, academia, and government
have participated in SEl working group activities, and three resident affiliates have joined
the Measurement Project staff. The Defense Advanced Research Projects Agency
(DARPA) has also supported this work by making it a principal task under the Department of
Defense Software Action Plan (SWAP). The results of these various efforts are presented
here and in the following SEI reports:

» Software Size Measurement: A Framework for Counting Source Statements
(CMU/SEI-92-TR-20)

- Software Quality Measurement: A Framework for Counting Problems and Defects
(CMU/SEI-92-TR-22) .

» Software Measures and the Capability Maturity Model (CMU/SEI-92-TR-25)

« Software Measurement Concepts for Acquisition Program Managers
(CMU/SEI-92-TR-11)

* A Concept Study for a National Software Engineering Database
(CMU/SEI-92-TR-23)

» Software Measurement for DoD Systems: Recommendations for Initial Core
Measures (CMU/SEI-92-TR-19)

This report and the methods in it are outgrowths of work initiated by the Effort and Schedule
Subgroup of the Software Metrics Definition Working Group. Like the reports listed above,
this one contains guidelines and advice from software professionals. It is not a standard,
and it should not be viewed as such. Nevertheless, the frameworks and recommendations
it presents give a solid basis for constructing and communicating clear definitions for some
important measures that can help all of us plan, manage, and improve our software projects
and processes. :

CMU/SEI-92-TR-21 v

We hope that the materials we have assembled will give you a solid foundation for making
your effort and schedule measures repeatable, internally consistent, and clearly understood
by others. We also hope that some of you will take the ideas illustrated in this report and
apply them to other measures, for no single set of measures can ever encompass all that
we need to know about software products and processes.

Our plans at the SEI are to continue our work in software process measurement. If, as you
use this report, you discover ways to improve its contents, please let us know. We are
especially interested in lessons learned from operational use that will help us improve the
advice we offer to others. With sufficient feedback, we may be able to refine our work or
publish additional useful materials on effort and schedule measurement.

Our point of contact for comments is

Lori Race

Software Enginecring Institute
Carnegie Mellon University
Pittsburgh, PA 15213-3890

vi CMU/SEI-92-TR-21

Acknowledgments

The SEI measurelnent efforts have depended on the participation of many people. We
would like to thank the members of the Effort and Schedule Subgroup of the Software
Metrics Definition Working Group who contributed to the content and structure of this
document. The SEI is indebted to them and to the organizations that sponsored their
participation in the efforts to improve the measurement of effort and schedule. Without the
contribution of these professionals, we could not have completed this task:

Capt. Ken Anthonis
US Air Force

Michael Bailey
Planning Research Corporation

Neal Brenner
Tecolote Research

Lionel Briand
University of Maryland

Bernie Buchenau
US Air Force

David Card
Computer Sciences Corporation

Jack Chapman
Unisys Corporation

Charles Cox
Naval Weapons Center

Marion (Ernie) Dooley
Hughes Aircraft

Rich Maness
Martin Marietta

Gregory Mudd
Emerson Electric

Larry Putnam
Quantitative Software Management, Inc.

Jim Rozum
Software Engineering Institute

Jim Stroot
Jet Propulsion Laboratory

Steve Wilkinson
Acucobol

CMU/SEI-92-TR-21

vil

This report builds on the Software Project Effort and Schedule Measurement report that
was presented and distributed for review at the SEI Affiliates Symposium in August 1991. A
first draft of the current document was distributed to a large number of reviewer in June
1992. More than 140 comments and suggestions for improvement were returned. All have
received careful consideration, and most have been either incorporated or addressed
through the development of new materials. We are indebted to those who took the time and
care to provide so many constructive recommendations:

William Agresti
The MITRE Corporation

John Alexiou
IBM Corporation

Jim Bartlett

Allstate Insurance Company
John Bollard

ITT Avionics

Lyle Cocking
General Dynamics

Don Deveny
Boeing Computer Services

Dean Dubofsky
The MITRE Corporation

Harvey Hallman
Software Engineering Institute

Jack Harding
Bull HN Information Systems, Inc.

Derek Hatley
Smiths Industries

Whit Himel
McDermott

Watts Humphrey
Software Engineering Institute

George Huyler
Productivity Management Group, Inc.

Betty Falato
Federal Aviation Administration

Liz Flanagan
AT&T Bell Laboratories

Robert Grady
Hewlett-Packard

Chris Kemerer
Massachusetts Institute of Technology

Gary Kennedy
IBM Corporation

Harry T. Larson
Larbridge Enterprises

Frank McGarry
NASA (Goddard Space Flight Center)

Everald Mills
Seattle University

Kerux-David lee Nea:
Northrop Corporation

Joseph Polizzano

ITT Avionics Division

Sam Redwine

Software Productivity Consortium

Don Reifer
Reiter Consultants, Inc.

Paul Rook
S.E.P.M.

John Salasin
Software Engineering Institute

Norman Schneidewind
Naval Postgraduate School

viil

CMU/SEI-92-TR-21

Marie Silverthorn
Texas Instruments

Al Snow
AT&T Bell Laboratories

S. Jack Sterling
Logicon Eagle Technology, Inc.

Irene Stone
AlL Systems Inc.

Bob Sulgrove
NCR Corp.

Susan Voigt
Don O'Neill Consulting

ix

CMU/SEI-92-TR-21

We also thank the members of the Measurement Steering Committee for their many
thoughtful contributions. The insight and advice they have provided have been invaluable.
This committee consists of the following senior representatives from industry, government,
and academia who have earned solid national and international reputations for their
contributions to measurement and software management:

William Agresti
The MITRE Corporation

Henry Block
University of Pittsburgh

David Card
Computer Sciences Corporation

Andrew Chruscicki
USAF Rome Laboratory

Samuel Conte
Purdue University

Bill Curtis
Software Engineering Institute

Joseph Dean
Tecolote Research

Stewart Fenick
US Army Communications-
Electronics Command

Charles Fuller
Air Force Materiei Command

Robert Grady
Hewlett-Packard

John Harding
Bull HN Information Systems, Inc.

Frank McGarry
NASA (Goddard Space Flight Center)

John McGarry
Naval Underwater Systems Center

Watts Humphrey
Software Engineering Institute

Richard Mitchell
Naval Air Development Center

John Musa
AT&T Bell Laboratories

Alfred Peschel
TRW

Marshall Potter
Department of the Navy

Samuel Redwine
Software Productivity Consortium

Kyle Rone
IBM Corporation

Norman Schneidewind
Naval Postgraduate School

Herman Schultz
The MITRE Corporation

Seward (Ed) Smith
IBM Corporation

Robert Sulgrove
NCR Corporation

Ray Wolverton
Hughes Aircraft

CMU/SEI-92-TR-21

As we prepared this report, we were aided in our activities by the able and professional
support staff of the SEl. Special thanks are owed to Mary Beth Chrissis and Suzanne
Couturiaux, who were instrumental in getting our early drafts ready for external review; to
Linda Pesante and Mary Zoys, whose editorial assistance helped guide us to a final,
publishable form; to Marcia Theoret and Lori Race, who coordinated our meeting activities
and provided outstanding secretarial services; and to Helen Joyce and her assistants, who
so competently assured that meeting rooms, lodgings, and refreshments were there when
we needed them.

And finally, we could not have assembled this report without the active participation and
contributions from the other members of the SEI Software Process Measurement Project
and the SWAP team who helped us shape these materials into forms that could be used by
both industry and government practitioners:

Donald McAndrews
Software Engineering Institute

Anita Carleton
Software Engineering Institute

John Baumert Robert Park
Computer Sciences Corporation Software Engineering Institute

Mary Busby
The IBM Corporation

Elizabeth Bailey
Institute for Detense Analyses

Andrew Chruscicki
USAF Rome Laboratory

Judith Clapp
The MITRE Corporation

William Florac
Software Engineering Institute

Shari Lawrence Pfleeger
The MITRE Corporation

Lori Race
Software Engineering Institute

James Rozum
Software Engineering Institute

Timothy Shimeall
Naval Postgraduate School

Patricia Van Verth
Canisius College

CMU/SEI-92-TR-21

xi

xii CMU/SE!-92-TR-21

Software Effort & Schedule Measurement:
A Framework for Counting Staff-Hours and
Reporting Schedule Information

Abstract. This report contains guidelines for defining, recording, and reporting
staff-hours. In it we develop a framework for describing staff-hour definitions,
and use that framework to construct operational methods for reducing
misunderstandings in measurement results. We show how to employ the
framework to resolve conflicting user needs, and we apply the methods to
construct specifications for measuring staff-hours. We also address two different
but related aspects of schedule measurement. One aspect concerns the dates
of project milestones and deliverables, and the second concerns measures of
progress. Examples of forms for defining and reporting staff-hour and schedule
measurements are illustrated.

1. Introduction

1.1. Scope

This report presents an approach to obtain operational methods for defining and recording
staff-hours and related schedule information. It provides the following:

A checklist-based framework for increasing clarity and consistency and reducing
misunderstanding in derived measures by making the staff-hour and schedule
measures exact and unambiguous.

* A checklist form that enables project managers to identify the issues and choices
they must address to avoid ambiguity and to communicate precisely what is
included and excluded in the staff-hour and schedule measurements.

« Examples of how to use the checklist to construct specifications that will meet
differing objectives.

» Examples of forms for recording and reporting measurement resuilts.

Refer to Appendix B for our rationale for using staff-hours to measure software project
effort.

CMU/SEI-92-TR-21 1

1.2. Objective and Audience

Our goal is to reduce ambiguities and misunderstandings in measures that use staff-hour
and schedule by giving organizations a foundation for specifying and communicating clear
definitions of the staff-hour and schedule measurements. There are three primary reasons
for collecting staff-hours:

» To pay individuals (payable hours)
» To charge for hourly services (billable hours)
» To use in productivity and quality studies (actual hours)

We provide operational methods to help organizations implement clear and consistent
recording, reporting, and use of staff-hours and schedule information. In many cases the
hours that should be reported vary with the purpose for which they will be used. Staff-hour
measurement and schedule information are key elements in software project estimating,
planning, and tracking.

This report is appropriate for managers, developers, maintainers, estimators, and process
improvement teams who want to use measurement to help plan, control, and improve their
processes for acquiring, building, and supporting software systems.

1.3. The Software Measurement Environment

The framework presented in this report is based on the notion that a software organization
has or will create a software measurement environment structured along the following
points:
1. Goals and objectives are set relative to the software product and software
management process.

2. Measurements are selected to ascertain the degree to which the goals and
objectives are being met.

3. Data collection processes and recording mechanisms are defined and used.
4. A data analysis and corrective action process is defined and used.

5. Measurements and reports are part of a closed-loop system that provides current
(operational) and historical information to technical staff and management.

6. Post-software product life measurement data is retained for analysis leading to
improvements for future product and process management.

These points are prerequisites for all measurement environments, and are stated here to
emphasize that their implementation is essential for the successful use of the framework
described in this report [[EEE Std 982.1988].

2 CMU/SEI-92-TR-21

2. Defining a Framework for Software Effort
Measurement

The framework proposed in this report uses checklists extensively. These checklists
provide the following:
« An operational mechanism for creating and communicating explicit definitions.

« A means for extending an organization’s understanding of its products and
processes as process maturity increases, without having to change underlying
definitions.

« A means for structuring definitions to meet the different information needs of various
organizations.

We used two principal criteria in preparing the framework and checklists:
« Communication: They must precisely communicate what is being measured and
what has been included and excluded in the numbers presented.

« Repeatability: They must enable others to repeat the measurements and get the
same results.

The framework we use to satisfy these criteria consists of the following steps:

1. Identify the principal attributes that characterize the object we want to measure.

2. Identify the principal classes of values within each attribute that users may want to
include in their measurements and ensure that these classes are mutually
exclusive.

3. Identify the principal classes of values within each attribute that users may want to
exclude from their measurements.

4. Prepare a checklist of principal attributes and their values, so that values included
in and excluded from measures can be explicitly identified.

5. Select the values to be included in the measure and exclude all others. Record
the selections and exclusions on the checklist.

6. Specify project-specific information to provide the context for the data and to
allow its comparison across projects.

7. Make and record measurements according to the definition and data
specifications.

8. Attach the measurement definition and data specifications to each set of
measurement reports.

These criteria and tactics have led us to th2 Staff-Hour Definition Checklist, the Schedule
Definition Checklist, the Supplemental Information Forms, and the recording forms for both
staff-hours and schedule. Appendix E contains blank forms that can be used as

CMU/SEI-92-TR-21 3

reproduction master. In the following sections, we will describe the forms and explain how
they are related and how they work together.

2.1. Staff-Hour Definition Checklist

The process we propose for constructing a staff-hour definition starts with a checklist. The
checklist identifies the principal attributes of staff-hours the software engineering community
wishes to measure and also identifies the values that each attribute can take on. Values
listed for an attribute should be both exhaustive (complete), to provide a means of recording
each possible value of the attribute, and mutually exclusive (non-overlapping), to avoid
ambiguity as to which recorded value is to be used. After we list principal attributes and
their values and arrange them into a checklist, the process for constructing a definition
becomes relatively straightforward. We use the checklist in constructing a definition by
simply checking all attribute values we want to include in and exclude from our definition.
We construct a supporting form to record any special situations that are not amenable to
checklist treatment. Forms help to ensure robust and repeatable measurement.

Initially the Staff-Hour Definition Checklist may be used not to require a specific definition
for staff-hours, but rather be used in conjunction with staff-hour reports to communicate
what attributes and values were included in a specific staff-hour measurement. In this case,
the checklist provides a structured approach for dealing with the details that must be
resolved to reduce misunderstandings when using the data from staff-hour measurement
reports.

Since staff-hour definitions help to make staff-hour reports more meaningful, we have
included in the Staff-Hour Definition Checklist a means to construct report specifications
that contain the attribute values for which individual subtotals are desired. Our Staff-Hour
Definition Checklist makes it possible to construct numerous report specifications based
upon the same definition of staff-hours. Figure 2-1 illustrates three report specifications
based upon the same staff-hour definition. For each report specification, the reporting
details may be different, but the staff-hour definition will be the same.

4 CMU/SEI-92-TR-21

Staff-Hour Definition

Attributes
Attr. 1

Attr. n

include

v

AN N

Exclude

v

)

For ease of use we have combined the staff-hour definition and the report specification into

a single Staff-Hour Definition Checklist as illustrated in Figure 2-2.

Report Specification Report Specification Report Specification
Attributes | Rpt Totals Attributes | Rpt Totals Attributes | Rpt Totals
Attr. 1 v Attr. 1 Attr. 1
® L] “ L]
L] L / L]
Attr. n Attr. n Attr. n v
Figure 2-1 Example of Multiple Report Specifications

CMU/SEI-92-TR-21

Staff-Hour Definition Report Specification
Attributes| Include | Exclude Attributes| Rpt Totals
Attr. 1 v Attr. 1
. v .
L] “ o “
L] “ L]
Attr. n v Atir. n v
Staff-Hour Definition
Checklist
| Attributes| Include | Exciude | Rpt Totals |
Aftr. 1 v v
i v
N v v
Attr. n v v

Figure 2-2 Interrelationship of Staff-Hour Definition and Report Specification

We have designed the checklist so that when a particular staff-hour is counted, it will have
one and only one value per attribute. Values within an attribute must be both mutually
exclusive and collectively exhaustive. We show the attributes as bold-faced attribute
headings, each followed by a list of the classes of values that the attributes may take on.
Chapter 3 discusses in detail the full set of attributes and values for the definition.

The checklist uses seven attributes to describe and bound the kinds of effort included in a
measure of staff-hours. These attributes are: Type of Labor, Hour Information,
Employment Class, Type of Pay, Labor Class, Activity, Product-Level Function (CSClI-Level
Functions, Build-Level Functions, System-Level Functions). Values within an attribute do
not overlap. When creating a definition, users have only to check the attribute values that
they will include and those they will exclude when measuring and recording staff-hours.
We have also included blank lines that may be used to expand partitioning of values if
required to meet local needs.

The user of the checklist constructs a definition of staff-hours by checking off all attribute
values included in and excluded from the definition. The Report Total column is used to
construct report specifications that contain the attribute values for which individual subtotals
are desired.

6 CMU/SEI-92-TR-21

The checklist we have designed helps to provide a structured approach for:
» Dealing with details that must be resolved to reduce misunderstanding.

+ Communicating unambiguously just what is included and what is excluded from the
measurement.

» Specifying attribute values for which individual reports are wanted.
Figure 2-3 is an example of how the first page of a completed checklist might look; it shows

requests for a number of reports for one particular definition of staff-hours. A blank Staff-
Hour Definition Checklist is located in Appendix E.

CMU/SEI-92-TR-21 7

Staff-Hour Definition Checklist

Definition Name: Totsl System Staff-Hours Date: 6/27/92
For Development Originator: SE!
Page: 10f3
Totals Totals | Report
Type of Labor include | exciude totals
Direct v
indirect 4
Hour Information
Regular time
Salaried
Hourly
Overtime v
Salaried
Compensated (paid) (4
Uncompensated (unpaid) v
Hourly RRRVIONARRDY RRRILANERRS
Compensated (paid) v
Uncompensated (unpaid) v

Employment Class

Reporting organization
Full ime
Part time

Contract
Temporary employees
Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task
Consultants

AYAYANAY

Labor Class
Software management
Level 1
Level 2
Level 3
Higher
Technical analysts & designers
System engineer
Software engineer/analyst
Programmer
Test personne!l
CSCl-to-CSCl integration
Ivav
Test & evaluation group (HW-SW)
Software quality assurance
Software configuration management
Program librarian
Database administrator
Documentation/publications
Training personnel
Support staff

A AN

...........
......................

..............

AV AYASA AV ATASANANAS

Figure 2-3 Example of Completed Staff-Hour Definit

on Checklist

CMU/SEI-92-TR-21

in practice, checklists turn out to be very flexible tools. An organization may include a
particular attribute in its definition and report a subtotal for each of several particular values
for the attribute. For example, an organization may report the subtotal for design as a sum
of preliminary design and detailed design. A checklist can easily address this option.

One word of caution: There are cost implications that users must keep in mind when
constructing report specifications (Report totals column). The level of detail depends on the
needs, goals, and objectives of an organization and project. Each organization and project
will be different. If the information requested is part of a contractor’'s normal time reporting
system, the cost associated with providing the requested subtotals may be minimal.
However, if the information required depends on manual collection and collation, the cost
may be very high. For small or exploratory projects, the cost of collection may exceed the
value of the data, making detailed measurement collection undesirable for such projects.

2.2. Supplemental Information Forms

Sometimes definition checklists cannot adequately describe all the information that must be
addressed to avoid ambiguities and misunderstandings in measurement data. When this
occurs, we recommend construction of supplemental information forms to record and
communicate the additional information. The combination of a completed checklist and its
supporting forms becomes a vehicle for communicating the meaning of measurement
results tc others, both within and beyond the originating organization.

Our Supplemental Information Form for staff-hour measurement includes the following:

« Work period length: The number of staff-hours in a work day, work week, and labor
month varies between organizations. This information needs to be recorded so that
derived measures in terms of these work periods can be compared.

» Labor class clarifications: Not all organizations use the same labor class terms or
include the same responsibilities in various labor classes. These differences need
to be described so that valid data comparisons can be made.

» Product-level function clarifications: Different organizations count the staff-hours for
some functions at different product-levels (major functional element, customer
release, or system level). This information needs to be recorded so that valid data
comparisons can be made.

Chapter 4 discusses in detail the form we have constructed for communicating
supplemental information about staff-hours.

2.3. Reporting Forms

The checklist must be supported by reporting forms that record and communicate
measurement results, providing a vehicle that can be used by those who enter the results
into a database. These forms must be consistent with the attributes and values designated

CMU/SEI-92-TR-21 9

for measurement, and should capture all information needed to track the data back to both
the definition and the entity measured. In many cases the data that should be reported vary
with the purpose for which they will be used. The reporting forms should be designed to
allow the user to communicate precisely what was included in the measurement, as well as
what was excluded. Each organization should determine its primary objective before
completing any of the reporting forms.

Chapter 5 discusses in detail the form we have constructed for reporting staff-hours and
schedule information.

10 CMU/SEI-92-TR-21

3. Understanding Staff-Hour Checklist
Attributes and Values

In this chapter, we define and illustrate the attributes and attribute values used in the
definition checklist and reporting forms. This chapter also addresses why the issues that
the checklist seeks to resolve are important. The sequence of discussion follows the order
of items on the checklist so that information on specific elements can be readily located.
We have used boldface type to highlight the attributes and their values. The sequence of
attributes is as follows:

* Type of Labor
* Hour Information
* Employment Class
» Labor Class
- Activity
» Product-Level Functions
» CSCl-Level Functions (major functional element)

+ Build-Level Functions (customer release)
+ System-Level Functions

The list of attributes and attribute value documents what constitutes staff-hour measurement
data for a given software development project. This helps to ensure that those who receive
the data know exactly what it contains. It also helps to avoid oversights when collecting the
data for later analysis.

Not all software development projects use the terms tniat we present in the checklist.
However, we have attempted to describe the terms in sufficient detail below so that their
meaning is clear. Also, not all of the attribute values may be included in the staff-hour
measurement definition for a given project. The detailed list is meant to be used initially as
a “memory jogger” for employees who are asked to develop the staff-hour definition for
specific projects. This ansures that significant elements of staff-hours in a given definition
were excluded consciously and not merely overlooked. Because some software
development projects may have additional staff-hour attributes or values, we have included
blank lines where you may add project-unique elements.

Reminder: The format of the checklist is not meant to imply that you should collect separate
subtotals for every individual value of every attribute. The costs associated with software
measurement data collection cannot be ignored. The benefits gained from collecting more
detailed data must be weighed against the costs of that data collection.

CMU/SEI-92-TR-21 11

3.1. Type of Labor

Totals Totals | Report

includ lud

Type of Labor
Direct
Indirect

Figure 3-1 The Type of Labor Attribute

Labor on software development projects consists of two types—direct and indirect hours.
Direct hours are those that are charged directly to the project or contract, and indirect hours
are those that are not. Even though indirect hours are not charged directly to the contract,
the costs associated with these hours are frequently covered, at least in part, in the burden
or overhead rates that are often applied as multipliers to the direct contract or project
charges.

You may include all of the attributes described in the following sections in direct staff-hours,
if such a definition is legitimate for the individual project or contract. The staff-hours
associated with development of a software product for an internal or external customer are
usually direct project charges. However, organizations and contracts vary on how software
process development staff-hours are charged. Software process activities directly related
to development of a specific software product (such as defining the procedures, standards,
and conventions to be used in developing that product) are usually directly charged to the
project. Other software process activities, such as software quality assurance, may be
charged directly to the projects being covered or may be included in indirect charges. Still
others, such as organization software engineering process improvement team activities, are
usually not specific to a given project, but are applicable to numerous projects. Therefore,
the costs associated with staff-hours for these activities are frequently included in indirect
charges. The same can be said for secretarial support, internal training, and computer
operations functions. Overhead rates applied to the direct charges cover these indirect
charges.

An organization can use direct and indirect staff-hour counts for various planning and
tracking purposes. Counts of direct staff-hours are useful in tracking actual hours expended
versus planned hours. These counts are also frequently used in conjunction with source
line counts to determine productivity rates. These rates in turn are useful in estimating
staffing needs on future software development projects. You may use counts of indirect
staff-hours in calculating burden rates to be applied to direct charges so that overhead
costs are covered. However, since indirect charges are usually made for activities that are
not specific to a given software product, we recommend that you include only direct staff-
hours in a project’s staff-hours measurement definition.

12 CMU/SEI-92-TR-21

3.2. Hour Information

Totals | Totals | Report
include exclude totals

Hour Information
Regular time
Salaried
Hourly

Overtime
Salaried
Compensated (paid)
Uncompensated (unpaid)

Hourly
Compensated (paid)
Uncompensated (unpaid)

Figure 3-2 The Hour Information Attribute

Staff-hours, whether direct or indirect, may be regular time or overtime hours. Regular time
consists of the hours in the usual work day for a given software development organization.
The 8-hour work day remains the norm for most organizations; however, some have work
days of 9, 7.5, or 7 hours. The work shift—first, second, or third—is not a factor in
measuring work effort. For true shift work, each shift has a regular work day. Staff-hours
beyond an employee’s regular shift are considered overtime. For some organizations,
overtime hours do not accrue until an employee has worked the number of hours in the
regular work week. Any number of hours may be worked in a given day, but none are
considered overtime until the 40 (or 45 or 37.5 or 35) hours in the regular work week have
been accumulated. Depending on company or organization policy, the contract, and the
employee’s job position, overtime hours may or may not be compensated; and if
uncompensated, the overtime hours may not even be recorded.

This attribute describes the wage or pay type for the employees working on a given
software development project. It is further subdivided into the salaried and hourly types of
pay. Whether an employee is considered salaried or hourly depends on individual
company policy regarding the type of pay for a given job position. Usually, salaried
employees are in more professional job positions, such as the fields of engineering, law,
and medicine, which require more education than do hourly positions. These employees
are generally paid an annual salary, although they are not paid on an annual basis. That
is, they receive a paycheck on some periodic basis: monthly, semi-monthly, weekly. On the
other hand, hourly employees are paid at an hourly rate. However, they may receive their
paychecks on the same schedule as do the salaried employees in the same company or
they may receive them more frequently.

Salaried positions are frequently considered exempt under federal government labor law.
That is, employees in higher level salaried positions are usually not compensated for

CMU/SEI-92-TR-21 13

overtime. Employees in entry and low-level salaried positions may or may not be
compensated for overtime. Hourly positions are usually considered non-exempt. Hourly
employees are generally paid for overtime and at a higher hourly rate than for their regular
time.

Even though salaried employees are not paid at an hourly rate, it is necessary to record the
hours in some fashion, probably using the same timekeeping system as for the hourly
employees. It should not matter whether the hours have been worked by salaried or hourly
employees as long as those hours are applicable, i.e., they fall under the Type of Labor
definition.

For clear insight into the effort expended on a software development project, all staff-hours
must be counted, both regular time and overtime. This is true regardless of whether the
overtime hours have been compensated and regardless of the type of pay. (Obviously, the
staff-hours associated with unrecorded overtime cannot be included.) The many unknowns
involved can make it extremely difficult to estimate in advance the number of staff-hours that
will be required to complete a project. As a result, cost overruns and schedule slips can
occur. However, if historical data from previous, similar projects are available, including
both regular and recorded overtime hours, planners can more accurately estimate the
resources required to complete a new project.

3.3. Employment Class

Totals | Totals | Report

Employment Class

Reporting organization
Full time
Part time

Contract
Temporary employees
Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task
Consultants

Figure 3-3 The Employment Class Attribute

The employment class attribute includes the reporting organization and contractor
categories. The reporting organization is the prime developer of a software product. This
may be an in-house software development organization or it may be the prime contractor if
a contract has been established to develop a given software product. In turn, the prime
developer may have subcontractors with responsibility for providing support functions or for
developing portions of the software product.

The full-time staff consists of those employees who are hired to work at least a full work
week, whatever number of hours the work week is defined to be. Part-time staff members

14 CMU/SEI-92-TR-21

are hired to work some number of hours less than a full work week. Full-time and part-time
employees may be hired on a permanent or temporary basis. Temporary employees may
be supplementals such as college co-ops and interns, retirees who return to work
temporarily to give the benefit of their expertise, or term employees hired for a prescribed
period of time. It should not matter whether the staff-hours counted are from full-time or
part-time employees if those hours are included under the Type of Labor definition
described above.

Contracted employees may be temporaries hired for short periods of time to cover for
absent permanent employees of the prime developer or to work on short-term tasks so the
prime developer need not hire additional staff members. Contractors may also be hired to
work on long-term tasks, either participating directly on tasks being worked on by teams of
employees of the prime developer or working semi-independently on a subcontracted task.
Consultants are contracted employees who may provide assistance on either a short-term
or long-term basis. As with the full-time and part-time staff-hours, it should not matter
whether the hours counted are from the prime developers organization or from a
subcontractor, as long as they fall under the Type of Labor definition. All of these hours
need to be counted for clear insight into the effort expended on a software development
project.

It is useful to count the fuli-time/part-time and prime developer/subcontractor hours
separately to be able to determine the amount of work being done by each employment
class. Turnover is frequently higher among part-time and subcontracted employees. if a
high percentage of the work on a software development project is being performed by part-
time and/or subcontractor employees, the schedule risk may be greater.

CMU/SEI-92-TR-21 156

3.4. Labor Class

Totals | Totals | Report

Labor Class
Software management
Level 1
Level 2
Level 3
Higher .
Technical analysts & designers
System engineer
Software engineer/analyst
Programmer
Test personnel
CSCl-to-CSCl integration
V&V
Test & evaluation group (HW-SW)
Software quality assurance
Software configuration management
Program librarian
Database administrator
Documentation/publications
Training personnel
Support staff

Figure 3-4 The Labor Class Attribute

The Labor Class attribute consists of the various classes of functional job positions on a
software development project. The list of labor classes in the Staff-Hour Definition
Checklist covers the functional job positions associated with most software projects.
However, not all organizations use the same terms for labor classes as are in the checklist,
nor do all companies organize software project efforts into exactly these classes of job
positions. Some classes may be combined, and others may be broken out differently.
Therefore, valid comparisons of individual labor class subtotals may not be possible
between different organizations. However, where the labor class definitions are consistent
within an organization or between organizations, you will be able to compare multiple
projects. The classes listed below cover a broad range of categories; however, you may
need additional classes for a specific project. If so, blank lines are available at the end of
the labor class section of the definition checklist to allow for additional classes.

As stated before, all hours should be counted if they fall under the Type of Labor
definition for a given software development project. It should not matter what classes of
labor are involved. However, it is useful to accumulate separate subtotals for some of the
specific classes of labor. For example, the totals hours accrued by the software designers
and programmers are frequently used with software size counts to calculate productivity
rates. These rates are useful in planning schedules for later builds (releases) for a software

16 CMU/SEI-92-TR-21

development project or for future projects. Similar productivity rates may be calculated for
other labor classes as well. Labor classes included are described in the following sections.

3.4.1. Software management

This class covers employees in supervisory and managerial positions. These employees
are responsible for the business and administrative planning, organizing, direction,
coordination, control, and approval of the activities necessary to accomplish the objectives
of a given software development project. Level 1 managers are the first line of supervision.
In addition to their business and administrative tasks, they may be responsible for
numerous personnel functions for the employees reporting to them, such as hiring,
performance evaluations, and determining pay rates. They may have technical
responsibilities as well. However, this class does not include lead designers and
programmers and other functional leads that do not have personnel responsibilities; these
employees should be included with their functional labor class. Level 2 managers have
one or more departments or groups headed by Level 1 managers reporting to them. Level
3 managers have one or more departments or groups headed by Level 2 managers
reporting to them. This reporting hierarchy is similar for higher level managers. The
checklist allows for the inclusion of any of these levels of management in the staff-hour
measurement definition if desired for a given software development project. However, the
list of management levels in the checklist is meant more as a reminder to the developer of a
projects staff-hour definition to consider all levels of management and not just Level 1.
Because higher levels of management may charge directly to the project as well, they
shouid not be overlooked.

3.4.2. Technical analysts and designers

This class included the individuals responsible for developing the detailed requirements
and designing a given software product. They are the system engineers or requirements
analysts, performance ai.alysts, software architects, and software engineers or software
designers. The system engineers or requirements analysts develop the detailed
requirements and generate the Software Requirements Specification and Interface
Requirements Specification documents [DOD-STD-2167A]. They are also responsible for
reliability engineering, maintainability, engineering, and human factors engineering
functions. They may also develop the detailed performance requirements for the system
and analyze the actual performance of the system as it is developed, if these tasks are not
done by independent performance analysts. The software architects develop the high-level
software system architecture based on the system architecture and the detailed
requirements provided by the system engineers. Software engineers or software designers
develop the high-level and detailed software design, including desigh documentation.
Depending on the size of the software development project, these roles may overlap, with
one individual performing multiple functions in this class.

CMU/SEI-92-TR-21 17

3.4.3. Programmer

The individuals in the programmer class are responsible for the implementation of an
element or group of elements of a software product. That is, based on the design provided
by the software engineers or software designers, the programmers write the code and
usually perform the initial testing of the code. This class may overlap with the previous
one: programmers may also develop the detailed and even the high-level design of the
software elements they are responsible for implementing. Overlap with the Technical
Analyst/Designer class may also occur, especially when a requirement is implemented in a
fourth-generation language (4GL). Unless a separate group performs all testing, the
programmers are also responsible for generating and developing test procedures for the
unit, intermediate functional element (computer software component, or CSC [DOD-STD-
2167A]) and sometimes even for the major functional element (computer software
configuration item, or CSCl) and may also run the tests. Software maintenance activities
such as problem analysis and the design, coding, and testing of fixes are also performed
by programmers. In addition, programmers may be responsible for software reuse
activities such as locating candidate objects and adapting them for reuse.

3.4.4. Test personnel

The individuals in this class perform various levels of independent testing of the software
and hardware/software systems. They include high-level test engineers responsible for
generating test documentation such as test plans and test procedures, as well as line
testers who run the tests. In some organizations, the same personnel perform these roles
The programmers are aimost always responsible for the initial, detailed functionai testing,
and the staff-hours associated with this testing are usually combined with the rest reported
for the Programmer labor class. However, on some projects, even this testing is performed
by a separate test team, and the associated staff-hours could be reported in the Test
Personnel labor class. This distinction needs to be documented on the Supplemental
Information Form. Large software development projects may have major functional
element-to-major functional element (CSCI-to-CSCI) integration test departments within the
organization responsible for implementing the software. If so, the personnel performing this
testing would be included in this class. The individuals who perform independent testing
after release of a software product from the implementing organization are definitely
included. This testing includes software independent verification and validation (IV&V),
software system integration testing, hardware/software system test and evaluation, and any
other testing performed prior to delivery to the customer.

3.4.5. Software quality assurance

Some software development projects include SQA functions within the software
development organization. However, this class covers those individuals who perform SQA
functions and who report to management outside of the software development organization.
The functions of these independent SQA personnel vary depending on the project. They

18 CMU/SEI-92-TR-21

frequently include analyzing software measurement data and auditing the software
development organization’s adherence to its documented procedures. The staff-hours
associated with SQA functions performed within a software development organization, such
as design and code inspections or peer reviews, are frequently not available separately
from the time reporting system but are collected with the specific labor class of the
personnel performing them (for example, Programmer and Test personnel).

3.4.6. Software configuration management

The personnel in this class are responsible for linking together the various software
elements to create the software system for testing and, ultimately, the system delivered to
the customer. Involved in this is the creation and management of the software libraries that
contain the software, and possibly electronic copies of the associated software
documentation. On some large software development projects, the organization

responsible for implementing the software may include an internal team that performs CM
functions prior to release to independent test. This function is sometimes called informal
CM, and is followed by formal CM, which is performed by a group external to the

implementing organization after release to independent test. On other software projects,
only one group—either the implementing organization or an external group—performs all
CM functions. In either case, all staff-hours should be counted. However, if the staff-hours
associated with software CM are mixed with those of other labor classes in the time
reporting system, such as Programmer or Test Personnel, it may not be possible to obtain a
separate subtotal for this labor class.

3.4.7. Program librarian

This class includes individuals responsible for maintaining the library of all documentation
for a given software development project. This documentation may include hard copies of
code listings and associated software documents, manuals, reports, and correspondence.
On federal government software development contracts, this labor class is responsible for
maintaining and possibly distributing the data requirements deliverables (DRDs) specified
in the Contract Data Requirements List (CDRL). In some software development
organizations, this function may be called Data Management.

3.4.8. Database administrator

The DBA is responsible for creating and maintaining the electronic databases associated
with a software development project. These databases may be used for internal, non-
deliverable functions, such as inspection action item and problem tracking systems, or may
be created as part of the actual deliverable products of a software development project.

CMU/SEI-92-TR-21 19

3.4.9. Documentation/publications

This class covers individuals who support the generation of the documentation associated
with a software development project. It usually includes at least copy support functions.
Depending on the level of support defined for a given project, this may or may not include
technical writers and editors. However, as workstation documentation tools become more
widely used, much of the work previously performed by individuals in this class is now
being done by the members of other labor classes described in this section. This is often
the case with tools that generate software documentation automatically from commentary in
the code.

3.4.10. Training personnel

This class includes the individuals involved in the development and/or delivery of training.
However, this does not include the hours worked by outside vendors who supply
commercial training courses. This class includes the personnel who develop or deliver
internal training courses, i.e., training for the employees involved in a software development
project, as well as the individuals who develop or deliver training courses to customer
personnel, if the courses are required for a specific software development contract and if
the hours are charged directly to the contract. Frequently, the staff-hours associated with
internal training course delivery or development are considered indirect charges. Also,
many contracts specify whether or not training may be included in the development
charges. Therefore, it depends on the contract as well as the Type of Labor definition
whether or not these staff-hours are included in the measurement data.

3.4.11. Support staff

This class covers individuals performing support functions not covered in the above
classes. These functions include secretarial and clerical support and software
development environment support personnel, such as computer operators, internal and
customer help desk personnel, and technicians responsible for installing workstations and
associated software development tools. Also included are employees responsible for
creating, installing, and checking out the operational software product packages for each
customer or user set.

20 CMU/SEI-92-TR-21

3.5. Activity

Totals Totals | Report
include exclude totals

Activity
Development
Primary development activity
Development support activities
Concept demo/prototypes
Tools development, acquisition, installation, & support
Non-delivered software & test drivers
Maintenance
Repair
Enhancements/major updates

Figure 3-5 The Activity Attribute

A software development organization may have one or more types of activities occurring
over time. Development generally means new software development projects and
frequently covers most, if not all, of the software development life cycle—requirements
analysis, design, code, development test, independent verification, and system test.
Maintenance includes activities that occur after a new software product has been
released—problem repair and functional enhancement. However, maintenance may
include the same activities that are performed for new software products. Sometimes, an
organization or company that did not develop the initial product may perform the
maintenance of a software product. A further decomposition of the maintenance activities—
such as reverse engineering and examining side effects of the code fixes—have not been
included at this time. We have left blank lines on the checklist so you may include them if
appropriate for your organization.

Individual totals for development staff-hours and maintenance staff-hours are useful as
historical data for the planning of future new software development projects and software
maintenance projects. In fact, individual totals within the maintenance activity for repair
staff-hours and enhancement staff-hours give further insight into the resources needed for
future similar activities.

3.6. Product-Level Functions

This attribute addresses the various functional levels of a software development or
maintenance project by CSCl-Level Function (Major Functional Element), by Build-
Level Functions (Customer Release), and by System-Level Functions. Different
organizations collect the staff-hours for management, software quality assurance,
configuration management, and documentation at different levels. Some may ccllect these

CMU/SEI-92-TR-21 21

staff-hours at the system level, while others may collect them at more detailed levels, that is,
per customer release or even for each major functional element. Where a project collects
these staff-hours—or the staff-hours for any other functions collected differently than
indicated in the definition checklist form—should be indicated on the associated
Supplemental Information Form.

3.6.1. CSCl-level functions (major functional element)

Totals Totals | Report
include clude totals

Product-Level Functions

CSCIl-Level Functions (Major Functiona! Element)
Software requirements analysis
Design

Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) integration and testing
CSCl integration & testing
Ivav
Management
Software quality assurance
Configuration management
Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing
Documentation

Figure 3-6 The CSCI-Level Functions Attribute

The functions of a software development project occur at different levels—the system level,
the customer release level, and the major functional element level. On federal government
software development projects using the methodology outlined in DOD-STD-2167A, a
major functional element corresponds to a computer software configuration item (CSCI).
This level is where the bulk of the actual software development and maintenance efforts
occur. These efforts include the activities described below.

- Software requirements analysis. This function includes analysis of the system
requirements and their decomposition into major functional elements, as well as
documentation of the detailed software and interface requirements for each major

22 CMU/SEI-92-TR-21

functional element. In addition, internal inspections (walkthroughs) of the requirements
documentation may be included. This function usually concludes with a formal review
of the detailed requirements with the customer.

« Design. Included here are analysis of the detailed requirements and their
decomposition into intermediate and low-level functional elements, as well as
generation of the high-level (preliminary) and low-level (detailed) design and
associated test documentation. Generation of program design language (PDL)
descriptions of the design, internal inspections of the design, and test documentation
may also be included. This function usually concludes with formal reviews of all levels
of design with the customer. Representative sample activities are as follows:

» Create and maintain the software development files/folders.

Analyze the preliminary software design.

Derive and map out software design specifications.

Define and describe interface design specifications.

Generate input to software test planning.

Prepare and conduct design reviews.

» Coding. This function includes analysis of the design and generation of the coding
language instructions that implement the design. Also included are compilation and
debugging (if necessary) of the code and generation of detailed test procedures. In
addition, internal inspections or peer reviews of the code and test procedures may be
included. Representative sample activities are as follows:

« Code and compile.
» Conduct code walk-throughs.
« Generate test and integration procedures.

» Development testing. Included in this function are execution of the detailed test
procedures to test the low-level functional elements (units) and integration of the low-
level functional elements into iniermediate functional elements (CSCs). This is
followed by the execution of test procedures to exercise the intermediate elements to
verify that algorithms and data employed in interfacing each CSC or object are
correctly specified and implemented (sometimes called computer software component
integration and testing). Representative sample activities are as follows:

 Perform unit testing.
» Perform CSC integration and analysis.

 Perform CSC build and lower level thread testing.

CMU/SEI-92-TR-21 23

Major functional element integration and testing. This function includes
integration of the intermediate level functional elements into major functional elements
(CSCls) and execution of test procedures to exercise the major functional elements
(sometimes called CSCI integration and testing). This is usually followed by a formal
project review to determine if the major functional elements are ready for release to the
independent test organization and release after approval.

Independent testing. Included here are generation of independent (from the
software development organization) test plans, specifications, and procedures and
execution of these test procedures to ensure the code implements the requirements
(sometimes called independent verification and validation or IV&V).

Management. Different organizations collect their management staff-hours at the
specific major functional element level or aggregate all of their management hours at
the system level. If the management staff-hours are collected at the specific major
functional element level, they are included in this activity. The Supplemental
Information Form should indicate were the staff-hours are collected.

- Software quality assurance. This function includes the SQA activities associated

with a specific major functional element. For DoD software projects, this consists of
those tasks that ensure compliance with the government requirements for development
and implementation of the contractor’s software quality program [MIL-STD-8818B,
(Draft)]. Depending on the project, staff-hours for SQA may be collected at a higher
level. Again, the Supplemental information Form should indicate the level that the
SQA hours are collected.

Configuration management. Included in this function are software CM
activities associated with a specific major functional element. Depending on the
project, staff-hours may be collected at a higher level which should be indicated on the
Supplemental Information Form.

Documentation. This function includes generation and update of documentation
associated with a specific major functional element. It may be desirable to decompose
this category into sub-categories for each of the major formal documents at some future
time. We decided for the initial version of the checklist not to do this at this time.
Depending on the project, staff-hours may be collected at the CSCi-level or may be
collected with the corresponding functional activity (for example, design). This should
be indicated on the Supplemental information Form.

- Software rework. Included here are analysis and rework of all appropriate software

development products, including documentation, to (1) fix problems when errors are
discovered during any software development activity or (2) make the necessary
software changes whenever the customer changes existing requirements or adds new
ones. Rework may require changes only to the code, in which case only re-coding and
re-testing will be necessary. However, changes to the design or to the detailed
software requirements may be required, in which case re-design and rework of the
associated design and requirements documentation will also be necessary.

24

CMU/SEI-92-TR-21

3.6.2. Build-level functions (customer release)

Totals Totals | Report
include | exclude totals

Build-Level Functions (Customer Release)
(Software effort only)
CSCl-to-CSCl integration & checkout
Hardware/software integration and test
Management
Software quality assurance
Configuration management
Documentation
V&V

Figure 3-7 The Build-Level Functions Attribute

For DoD contractors, a software build is an aggregate of one or more computer software
configuration items that results in the satisfaction of a specific set or subset of requirements
based on development of software as defined in DOD-STD-2167A [MIL-HDBK-171, (Draft)].
A build is a separately tested and delivered product. Build-level functions are those that are
performed for each release of a software product to the customer. On federal government
contracts using DOD-STD-2167A, a customer release corresponds to a build. One or more
major functional elements are included in a customer release. in addition to the major
functional element-level functions described above, customer release-level functions
include the following activities:

» CSCI-to-CSCI integration and checkout. This function includes integration of the
major functional elements, if more than one, into the software system and execution of
test procedures to exercise the system. This activity is sometimes called CSCI-to-CSCI
integration and checkout.

- Hardware/software integration and test. This function includes integration of
software system with the operational hardware platform and execution of the test
procedures to exercise the entire HW/SW system.

 Independent testing. Included here are the generation of independent (from the
software development organization) test plans, specifications, and procedures and
execution of the test procedures to ensure the code implements the requirements
(sometimes called independent verification and validation or IV&V). Also included is
the generation of problem reports when errors in the code are discovered. This
function usually ends with a formal review with the customer of the readiness of the
software system for release to system testing and release after approval. Depending
on the project, staff-hours may not be collected at this level.

- Management. This function includes software management activities associated with
a specific customer release. Depending on the project, staff-hours may not be

CMU/SEI-92-TR-21 25

collected at this level. The level where these staff-hours are collected should be
indicated on the Supplemental Information Form.

- Software quality assurance. Included in this function are SQA activities associated

with a specific customer release. Depending on the project, staff-hours may not be
collected at this level. The level where these staff-hours are collected should be
indicated on the Supplemental Information Form.

Configuration management. This function includes software CM activities
associated with a specific customer release. Depending on the project, staff-hours may
not be collected at this level. The level where the staff hours are collected should be
indicated on the Supplemental Information Form.

Documentation. Inciuded here are generation and update o1 documentation
associated with a specific customer release. Depending on the project, staff-nours may
not be collected at this level or may be collected with the corresponding functional
activity (for example, independent testing). The level where these staff-hours are
collected should be indicated on the Supplemental Information Form.

3.6.3. System-level functions

Totals Totals | Report
include | exclude totals

System-Level Functions

(Software effort only)

System requirements & design
System requirements analysis
System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing
Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees
Customer training

Support

Figure 3-8 The System-Level Functions Attribute

The development of a system consists of one or more customer releases (builds), which in
turn consist of one or more major functional elements (CSCls). In addition to the major

26

CMU/SEI-92-TR-21

functional element-level functions and the customer release-level functions, the system-
leve! functions include the following activities:

- System requirements and design. This function includes analysis of the
customer’s requirements and generation of the system requirements documentation as
well as analysis of the system requirements and generation of the system design
documentation. These usually conclude with formal reviews of the system
requirements and system design with the customer.

- Software requirements analysis. Included here are analysis of the system
requirements and their decomposition into major functional elements, which are inputs
to software requirements analysis at the major functional element-level.

- Integration, test and evaluation. This function includes integration of the software
system with other software systems and execution of test procedures to test the
combined software system environment (sometimes called system integration and
testing). Also included are integration of the overall (multi-system) software system
with the hardware system and execution of test procedures to test the overall
environment (sometimes called test and evaluation). This usually ends with a formal
review with the customer of the readiness of the entire operational system for customer
acceptance testing.

- Production and deployment. Included in this function is packaging of the
operational system for distribution to customer sites. This may also include installation
at customer sites and user help desk (customer support) activities.

- Management. This function includes software management activities associated with
a specific software system, a combined (multi-system) software system, or an overall
hardware/software system. Depending on the project, staff-hours may not be collected
at this level. The level where these staff hours are collected should be indicated on the
Supplemental Information Form.

- Software quality assurance. Included here are SQA activities associated with a
specific software system, a combined (multi-system) software system, or an overall
hardware/software system. Depending on the project, staff-hours may not be collected
at this level. The level where these staff-hours are collected should be indicated on the
Supplemental Information Form.

- Configuration management. This function includes software CM activities
associated with a specific software system, a combined (multi-system) software system,
or an overall hardware/software system. Depending on the project, staff-hours may not
be collected at this level. The level where these staff hours are collected should be
indicated on the Supplemental Information Form.

- Data. Included in this function are copying, distribution, and library management of all
required software-related documentation. This includes project documents, reports,
manuals, and correspondence, as well as the generation and update of documentation
associated with a specific software system, a combined (multi-system) software system,

CMU/SEI-92-TR-21 27

or an overall hardware/software system. Depending on the project, documentation
staff-hours may be collected at this level or may be collected with the corresponding
functional activity (for example, system requirements and design). The level where
documentation staff-hours are collected should be indicated on the Supplemental
Information Form. The staff-hour data collected here is associated only with the
preparation and review of documentation and does not include the effort required in
the development of the software, such as design, requirements analysis, and coding.

+ Training. This function includes development and/or delivery of training courses for
software development or maintenance project employees or for the customer.

* Support. Included here are additional support activities associated with a software
development or maintenance project such as secretarial support, computer facilities
and operations support, internal help desk, and staff support to higher level
management and program office (for example: software process definition,
measurement, and improvement; contract change and budget coordination; customer
action item coordination).

28

CMU/SEI-92-TR-21

4. Using Supplemental Staff-Hour Information
Form

The Supplemental Information Form used in conjunction with the Staff-Hour Definition
Checklist provides a means to document project-specific information. This supplemental
information helps us to avoid ambiguities and misunderstandings when comparing staff-
hours measurement data for different projects. We capture the following information on
these forms:

* Hour information
» A description of the labor class
» A description of the product-level functions

4.1. Hour Information

As discussed in Section 3.2, different organizations have different lengths of work day, work
week, and labor month. The standard length for each of these should be listed on a
Supplemental Information Form as shown in Figure 4-1.

If measurements are reported in terms of work days, work weeks, or labor months, it's
necessary to know how many staff-hours are included in the units of measure. It is then
possible to make accurate comparisons among different projects. These comparisons are
useful for applying the historical data against future estimates so you can map “hours
needed” to “staff required.”

4.2. Labor Class

Not all organizations use the same terms for the various labor classes as we listed in the
Staff-Hour Definition Checklist form. Even those that do use the same terms may include
different responsibilities in a given labor class. (The usual responsibilities for each labor
class are described in the Section 3.4.) When your classes differ in any way from ours,
record it on the Supplemental Information Form.

- Software management. One area especially requiring clarification is the
management level. Primarily, the first level is where differences occur among software
development organizations. For some companies or organizations, the first-level
manager is responsible for technical management tasks but does not have personnel
management tasks other than possibly supplying employee performance evaluation
inputs to another level of management. In other companies or organizations, the first-
level manager is responsible for all the personnel management activities as well, tasks
such as interviewing, making hiring/firing decisions, planning employee development

CMU/SEI-92-TR-21 29

activities, evaluating employee performance, and determining pay rates. The
Supplemental Information Form includes a section where you can list the position titles
and job descriptions for each level of management included in the staff-hours
measurement for a given project.

- Technical analysts and designers vs. programmer. These two labor classes

occasionally overlap. That is, on some projects the design and the code are
developed by two different teams of employees; on others, the detailed design—and
even the high-level design—may be developed by the programmers, and there may
not be a separate design team. On the Supplemental Information Form, you can
explain which labor class develops each level of the software design.

» Programmer vs. test personnel. These two labor classes overlap because the

programmers usually perform the initial testing on the software they've developed.
However, in some cases, once the programmers achieve an error-free compilation,
they hand the software over to another team to perform the unit testing and the
intermediate functional element and major functional element integration testing. You
can include an explanation of which labor class performs these tests in the
Supplemental information Form.

4.3. Product-Level Functions

Different software development and maintenance projects count staff-hours for
management, software quality assurance, configuration management, and documentation
at different product-levels. That is, depending on the project, the staff-hours associated
with these functions may be counted at the major functional element (CSCI), customer
release (build), or system level-or a combination of these levels. On the Supplemental
Information Form, you can explain where the staff-hours are counted for these or any other
functions that differ from the delineation in the Staff-Hour Definition Checklist form.

30

CMU/SEI-92-TR-21

Supplemental Information Form
Staff-Hours Measurement

Definition Name:

Project Name:

Hour Information
Indicate the length of the following:
Hours

Standard work day
Standard work week
Standard labor month

Labor Class Information
Describe the typical responsibilities and duties for the labor categories indicated.

Labor Ci D ipti
Software Management
Level 1
Level 2
Level 3

Level 4

Technical analysts and designers
Programmer

Test personnel

Others

Product-Level Functions
Describe at what level(s) (major functional element, customer release,
and/or system) staff hours are counted for the functions indicated.

Eunction Level
Management

Software quality assurance
Configuration management
Documentation

Other

Figure 4-1 Supplemental Information Form

CMU/SEI-92-TR-21

31

32

CMU/SEI-92-TR-21

5. Using Forms for Collecting and Reporting
Staff-Hour Measurement Results

We have prepared examples of forms that can be used for reporting and transmitting staff-
hour information. They are consistent with the definitions and data specifications in
Chapter 3. They include information that tracks the data back to the definitions and to the
entities measured. Our purpose in presenting these example forms is not to say, “This is the
way.” Rather, it is to suggest ideas as to the kinds of forms that can be helpful in ensuring
that the details requested by measurement users are reported and communicated
precisely.

In principle, you should use one reporting form for each functional element measured.
Thus, you may use several (or even many) reporting forms for a given project or product.
For example, if the reporting specification requests staff-hours for the system as well as for
each build and CSCI within each build, generate one form for the system, one form for each
build, and another form for each CSCI within each build. Figure 5-1 shows this overall
scheme. This figure illustrates that all reporting forms are based upon the same staff-hour
definition, and separate copies of the reporting forms are used to report the staff-hours at
the CSCI, build, and system-level.

The primary purpose of the reporting form is to ensure correctly labeled data is entered into
the database and to communicate what was included and excluded in the staff-hour
measurement.

Figure 5-2 illustrates an example form that can be used to report staff-hours during the
development of a CSCI. Appendix E contains forms that may reproduced for use for the
entire system as well as for each build.

CMU/SEI-92-TR-21 33

Staff-Hour
Definition

Indude | Exclude

v
v

LY

\/

Staff-Hour Definition
Checklist

{include |Exclude |Rpt Totals
“ R
v
v
vl
g

System-Level -
Staff-Hours System-Level Report

Reporting Form

Build 1 Build 3 :
Staff-Hours Staff-Hours Staff-Hours B‘,’q'm”
Reporting Form Reporting Form Reporting Form

CSCl-Level
Reports

fad~Jal K- N

L] CSCL2
— CsCl t - CSCl 1
Staff-Hours Staff-Hours
Reporting Form Reporting Form

Figure 5-1 Reporting Concept

CMU/SEI-92-TR-21

Direct Staff-Hours Report
CSCI (Major Functional Element) Development

System Name: Build ID:
CSCI Identification: Version :

Direct Staff-Hours

Total Compensated Uncompensated

Regular Time = [_J1]

Overtime = | 11 1L |

Total = L 1 I L |
Work Performed Time Frame

Beginning Date: Ending Date:

CSCI (Major Functional Elements) Level Functions

Excluded Staff-Hours
Included Don’t Know (If requested)

Software requirements analysis
Design
Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) int. & testing

CSCl integration & testing
ivav
Management
Software quality assurance
Configuration management
Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing
Documentation

OCOO0O00000000000
SENEENIRNENNNNEEEREE
NERIENINRENNNNRRNEEN

Figure 5-2 Example Reporting Form for CSCI Development

CMU/SEI-92-TR-21

36

CMU/SEI-92-TR-21

6. Defining a Framework for Schedule
Definition Measurement

The framework presented here addresses two different but related aspects of schedule
measurement. One aspect concerns the dates of project milestones and deliverables.
The second concerns measures of progress, specifically the rate at which work is
accomplished in order to meet any given milestone or complete a deliverable. We include
checklists that enable us to specify and communicate both aspects. The checklists allow us
to specify the following:

* The reviews and deliverables associated with a project.

» The work units tracked to measure progress.

» Exit/completion criteria for both of the above.

» Frequency of reporting.

* Whether the dates represent planned values, actuals, or both.

We intend the checklists to be tailored by individual organizations and projects. For DoD
contractors, we present checklists for dates and for progress measures that are compatible
with DOD-STD-2167A. An additional set of checklists for specifying progress measures
reflect those included in the Army Software Test and Evaluation Panel set (STEP) [Betz 92],
in Air Force Pamphlet 800-48 (“Acquisition Management Software Management
Indicators”) [AFSC 90], and in the MITRE metrics (“Software Management Metrics” by
Schultz) [Schultz 88). The purpose of including these as examples is to show how the
checklists can help people who are implementing any of these sets of measures to better
specify the data to be collected, especially the completion criteria.

We also provide report forms that are derived from the checklists and a set of
recommendations for acquisition program managers, for cost analysts, and for personnel
involved in gathering measures to facilitate process improvement.

6.1. Why Include Schedule in the Core Set?

More often than not, schedule is the primary concern of project management. A timely
delivery may be as important as functionality or quality in determining the ultimate value of
a software product. The situation is complicated by the fact that the delivery date may have
been determined by external constraints rather than by the inherent size and complexity of
the software product. The result can be an extremely ambitious schedule.

Given that schedule is such a key concern, it is critical for project management to monitor
adherence to intermediate milestone dates; early schedule slips are often a precursor to
future problems. It is also critical to have objective and timely measures of progress that

CMU/SEI-92-TR-21 37

provide an accurate indication of current status and that can be used for projecting the
dates of future milestones.

In addition to acquisition and project managers, there are other users of schedule
information. Cost estimators and cost model developers are one such group. Project
duration is one of the key parameters used to construct new cost models or calibrate
existing ones. The model developer must understand what the duration includes and
excludes. If we are told that a project took three and half years, a reasonable response is 0
ask exactly what was included in that time period. Does it include system requirements
analysis and design or just the software activities? Does it include hardware-software
integration and testing or just the software integration?

Another group of users of schedule information are personnel involved in process
improvement. They need to understand the basic time dependencies of the project and to
identify bottlenecks in the process.

There are two different but related aspects of schedule measurement. One aspect
concerns the dates (both planned and actual) of project milestones and deliverables. The
second concemns the rate at which work is accomplished (again planned and actual)
in order to meet any given milestone or complete a deliverable. Section 6.2 contains a
checklist for project dates. Section 6.3 presents a checklist for measuring the rate of work
accomplished. The checklists are vehicles for describing cr specifying the schedule
information to be reported. We provide a set of report forms as well.

6.2. Dates of Milestones and Deliverables

A checklist for specifying the dates to be reported for a given project is shown in Figure 6-1
and Figure 6-2. The checklist has two major parts. The first part covers the major
milestones (reviews and audits) associated with the project; the second part covers the
project deliverables. When the checklist has been filled out, it will convey precisely which
reviews and deliverables are included and which are excluded. For projects with
incremental builds, the checklist will convey which reviews and deliverables are part of
each build.

38 CMU/SEI-92-TR-21

Schedule Checklist Date:

Part A: Date Information Originator:
Page 1 0of 3
Project will record planned dates: Yes No
If Yes, reporting frequency: Waeekly Monthly Other:
Project will record actual dates: Yes No
If Yes, reporting frequency: Weekly Monthly Cther:

Number of builds

ﬁepeat Relevant dates

Milestones, Reviews, and Audits Include | Exclude | each build reported®
System-Level TR

System requirements review

System design review

CSCl-Level RRERRRReRRs B28

Software specification review

Preliminary design review

Critical design review

Code complete

Unit test complete

GSC integration and test complete

Test readiness review
CSCl functional & physical configuration audits
5ys[em.[_eve| i B R R R R

Preliminary qualification test

Formal qualification test

Delivery & instaliation

Other system-level: Delivery to prime contractor

*Key to indicate “relevant dates reported” for reviews and audits

1 - Internal review complete
2 - Formal review with customer complete
3 - Sign-off by customer
4 - All high-priority action items closed
5 - All action items closed
6 - Product of activity/phase placed under configuration management
7 - Inspection of product signed off by QA
8 - QA sign-off
9 - Management sign-off

10 -

11 -

Figure 6-1 Schedule Definition Checklist, Page 1

CMU/SEI-92-TR-21

39

Page 2 0f3
Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include | Exclude | each build reported®
System-Level
Preliminary system specification
System/segment specification
System/segment design document
Preliminary interface requirements spec.
Interface requirements specification
Preliminary interface design document
Interface design document
Software development plan
Software test plan
Software product specification(s)
Software user's manual
Software programmer's manual
Firmware support manual
Computer resources integrated support doc.
Computer system operator's manual
CSCl-Level
Preliminary software requirements spec(s)
Software requirements specification(s)
Software preliminary design document(s)
Software (detailed) design document(s)
Software test description(s) (cases)
Software test description(s) (procedures)
Software test report(s)
Source code
Software development files
Version description document(s)

*Key to indicate "relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-oft by customer

8-

Figure 6-2 Schedule Definition Checklist, Page 2

Note that some of the dates apply to an entire system. The system design review (SDR)
and the system design document (SDD) are examples in that there is a single SDR and
SDD encompassing the system. Other dates apply to individual CSCls. The software
specification review (SSR) and the software requirements specification (SRS) are
examples. There are separate reviews held and SSRs written for each CSCI. It is highly
recommended that, when applicable, dates be reported to at least the CSCI level. Thus, for
planned dates and actuals, there will be one set of dates for the system-level reviews and

40 CMU/SEI-92-TR-21

deliverables but as many dates as there are CSCls for reviews and deliverables at that
level.

Note also that milestones have been added between the critical design review (CDR) and
the test readiness review (TRR). These include code complete, unit test complete, and
CSC Integration & test complete. DOD-STD-2167A leaves a large gap between the formal
review of the detailed design and TRR. If code complete and unit test complete are tracked
for each CSCI, the date recorded should represent the day that the last CSU from a given
CSCI has been coded or unit tested.

The first item on the checklist asks whether planned dates, actuals, or both are to be
provided. The second item asks about the frequency of reporting. An acquisition manager
is most likely to want planned and actual values provided at monthly intervals. A cost
analyst, on the other hand, may want only actual values provided on a one-time basis at the
conclusion of the project.

The first major section is used to indicate the scope of the project in terms of formal reviews
and audits. Note that there is a column to characterize each build. Formal reviews typically
encompass a series of steps or exit criteria rather than being a simple one-time event.
Organizations differ in the step that marks the successful completion of the review. An
example set of criteria for major project milestones might include the following:

e Hold internal review.

Hold formal review with customer.

Close high-priority action items.

» Close all action items.

Obtain customer sign-off.

The right-most column contains space for filling in one or more numbers that correspond to
the exit criteria listed below this section of the checklist. Fill in the numbers corresponding
to all criteria which are tracked (i.e., their planned and actual dates are reported). These
criteria are intended to be tailorable to individual projects and organizations.
List those that apply to your project. In this way, anyone looking at the checklist definition
for your project will know what dates are reported and exactly what the dates refer to.

Figure 6-3 shows an example of how one might fill out this section of the checklist for a
project that begins with software requirements analysis and runs through the CSCI
functional and physical configuration audit (FCA & PCA). The example project has a total of
four different builds. Each build includes a cycle of detailed design through FCA & PCA.

CMU/SEI-92-TR-21 41

Schedule Checkiist Date:
Part A: Date Information Originator:
Page 1 0of 3

Project will record planned dates: Yes v No

If Yes, reporting frequency: Woeekly Monthly [Other:
Project will record actual dates: Yes v No

If Yes, reporting frequency: Weeldy Monthly v Other

Number of builds

Repeat
each build

Include

Milestones, Reviews, and Audits

System-Level

System requirements review

System design review
CSCl-Level

Software specification review

Preliminary design review

Critical design review

Code complete

Unit test complete

CSC integration and test complete

Test readiness review

CSCI functional & physical configuration audits
System-Level

Preliminary qualification test

Formal qualification test

Delivery & installation

Other system-level. Delivery to prime contractor

U ISIREISIRINISIRISIS R
A AT AYAYAY AN

W Wiw Wi =] Wi

*Key to indicate “relevant dates reported” for reviews and audits

1 - internal review complete
2 - Formal review with customer complete
3 - Sign-off by customer
4 - All high-priority action items closed
5 - All action items closed
6 - Product of activity/phase placed under configuration management
7 - Inspection of product signed off by QA
8 - QA sign-off
9 - Management sign-off

10 -

11 -

Figure 6-3 Example of Completed Schedule Definition Checklist, Page 1

We can see from Figure 6-3 that the reviews from the software specification review (SSR)
through FCA & PCA are checked in the Include column. For the sake of completeness, the
earlier reviews are checked in the Exclude column because they are not part of the project.
The critical design review (CDR) and all subsequent reviews are repeated with each build.
Completion criteria 2, 3, and 6 are to be reported for SSR, PDR, and CDR; only a single
criterion is to be reported for the remaining ones.

The second major section is used to indicate the deliverable products associated with the
project. As with the section on reviews and audits, there is a column to characterize each

42 CMU/SEI-92-TR-21

build. As with reviews, deliverables typically encompass a series of completion criteria, the
planned and actual dates of which may or may not be formally tracked. An example set of
exit criteria for project deliverables might include the following:

+ Document entered under configuration management.

internal delivery and review.

Delivery to customer.

Customer comments received.

Changes-incorporated.
+ Obtain customer sign-off.

The right-most column contains space for entering the number or numbers that correspond
to these criteria. The criteria are listed below this part of the checklist. Figure 6-4 shows a
filled out example.

Note that there is no section in the checklist for specifying project activities or “phases.” The
reason for this omission is two-fold:

1. There is a great deal of ambiguity associated with the beginning and end of most
activities, making it difficult to define them in a precise, unambiguous way. Most
activities (e.g., requirements analysis, design, code) occur to some extent
throughout the project. Whereas one project may consider requirements analysis
complete with the software specification review, another may consider it to be
ongoing throughout development.

2. A second source of ambiguity stems from the fact that some activities start and
stop and start again, making it very difficult to pin down any meaningful dates.

In contrast, project reviews and deliverables are associated with specific dates. For these
reasons, the checklist on dates is limited to reviews and deliverables. Activities are
reflected in the progress measures discussed in Section 6.3.

CMU/SEI-92-TR-21 43

Page2of3
Part A: Date Information (cont.)

Repeat Relevant dates

Deliverable Products Include | Exclude | each build reported®
Syslem-Level T S B R AR AR BOSOEES
Preliminary system specification v

System/segment specification v

System/segment design document v

Preliminary interface requirements spec. v

Interface requirements specification v

Preliminary interface design document

Interface design document

Software development plan

Software test plan

Software product specification(s)

Software user's manual

Software programmer’s manual

Firmware support manual

Computer resources integrated support doc.

Computer system operator's manual
CSCl-Level

Preliminary software requirements spec(s)

Software requirements specification(s)

Software preliminary design document(s)

Software (detailed) design document(s)

Software test description(s) (cases)

Software test description(s) (procedures)

Software test report(s)

Source code

Software development files

Version description document(s)

1,3,5,6
3,5,6
3.5.6

ASAYASAY

SIRIRRIR

A AVANATASASANAY
AVASANANAN

A AY

“‘Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer

7 - IV&V sign-oft
8-

Figure 6-4 Example of Completed Schedule Definition Checklist, Page 2

It is worth repeating that the purpose of the checklist is to indicate which milestones and
which deliverables are associated with the project and the exit criteria that are tracked. The
actual dates are given on the report form.

44 CMU/SEI-92-TR-21

Figure 6-5 shows a report form for system-level milestones, reviews, and audits. The report
form has been tailored to reflect the milestones and completion criteria checked in Figure 6-
3. Note the column labeled Changed. A checkmark in this column indicates that the value
shown is different from the previous report (either changed or newly added). This is
intended to make it easy for the receiver of the report form to update only those values
which have changed.

Schedule Reporting Form Date:
Date Information Originator:
System-Level Information Project: __Example from Figure 6-3

Period ending:

Milestones, Reviews, and Audits* Planned Actual
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formal qualification test

3 - Sign-off by customer
Desilivery to prime contractor

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-5 Example of a Report Form for System-Level Milestone Dates

CMU/SEI-92-TR-21 45

Figure 6-6 shows a report form for CSCl-level milestones which has been tailored to the
example shown in Figure 6-3. Note that there will be a separate report form for each CSCI.

Schedule Reporting Form Date:

Date Information Originator:
CSCl-Level iInformation Project: _Example from Figure 6-3
Period ending:
CSCl:
Build:
Milestones, Reviews, and Audits* Planned Changed Actual

Software specification review

2 - Formal review with customer complete

3 - Sign-off by customer

6 - Products under configuration management
Preliminary design review

2 - Formal review with customer complete

3 - Sign-off by customer

6 - Products under configuration management
Critical design review

2 - Formal review with customer complete

3 - Sign-off by customer

© - Products under configuration management
Code compilete

1 - Internal review complete
Unit test complete

6 - Products under configuration management
CSC integration and test complete

5 - All action items closed
Test readiness review

3 - Sign-off by customer
CSCl functional & physical config. audits

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-6 Example of Report Form for CSCI-Level Milestone Dates

46 CMU/SEI-92-TR-21

Figure 6-7 shows a report form for system-level project deliverables that is consistent with

the example checklist from Figure 6-4.

Date information
System-Level Information

Deliverable Products*

Preliminary interface design document
3 - Delivery to customer

Interface design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

Schedule Reporting Form

Date:
Originator:
Project: Example from Figure 6-4
Period ending:

Planned Changed Actual

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Figure 6-7 Example of Report Form for System-Level Deliverables

CMU/SEI-92-TR-21

47

Figure 6-8 shows a report form for CSCl-level deliverables.
separate report form for each CSCI.

Note that there will be a

Schedule Reporting Form
Date Information

CSCl-Level Information

Deliverable Products*
Preliminary software requirements specification
3 - Delivery to customer
Software requirements specification
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer
Software preliminary design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer
Software (detailed) design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer
Software test description (cases)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer
Software test description (procedures)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer
Software test report
3 - Delivery to customer
7 - IV&V sign-off
Source code
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
6 - Sign-off by customer
7 - IV&V sign-off

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Date:

Originator:

Project:

Example from Figure 6-4

Period ending:

CSCl:

Build:

Planned

Actual

Changed

Figure 6-8 Report Form for CSCl-Level Deliverables

48

CMU/SEI-92-TR-21

It is worth emphasizing that the forms are intended to be tailored. The checklists and report
forms presented here are compatible with 2167A. List those milestones and deliverables
that are relevant to your project. For each milestone and deliverable, list your project’s exit
criteria.

Tracking milestone dates and deliverables provides a macro-level view of project schedule.
As noted earlier, slips in the early reviews and deliverables are often precursors of future
problems. Much greater visibility can be gained by tracking the progress of activities which
culminate in reviews and deliverables. By tracking the rate at which the underlying units of
work are completed, we have an objective basis for knowing where the project is at any
given point in time and a basis for projecting where it will be in the future. Section 6.3
covers these types of measures.

6.3. Progress Measures

This section contains a checklist for the other aspect of schedule management, that of
progress measurement. The checklist provides a means of describing or specifying or
communicating the units to be tracked during each of the following activities:

» Software requirements analysis
» Software preliminary design

» Software detailed design

* Code and unit test

» Software integration and test

* Formal qualification test

In order to effectively measure progress, we must have an estimate of the total number of
units to be developed and a planned rate of completion. The latter typically takes the form
of an S-curve. Figure 6-9 shows an idealized picture of such.

CMU/SEI-92-TR-21 49

Idealized Progress by Phase

As Revealed Through Rate of Completion of Constituent Work Units

100%

80%

60%

40%

Units Passed Completion Criterion

20%

0% I | /I l

SSR PDR CDR 1R
Units: Eng. Req’s. CSCs CSUs CSUs Tested FQ;;I":::G ?::es
Activity/ Specifed Dosigned Designed Sw Successfully
Frase S aee " W Dosign S/ Dosign mplementation csci itagration &

* Duration of phases not shown to scale

Figure 6-9 ldealized Rate of Unit Completion

In order for the progress measures to have any real meaning, there must be objective
criteria for counting a unit as complete. The precise set of criteria for completion are
addressed by the checklist. The checklist does not go into any detail about how the units
are to be definel. That is beyond the scope of the current effort. As long as a consistent
definition is used within a project for estimates and actuals, there is no problem. Units
cannot be compared across projects unless they use a common definition of units. It coes
not make sense, for example, to compare the number of CSUs designed per labor-month
for projects using different definitions for CSUs.

in terms of the users of schedule information, the progress measures will be of most interest
to the software acquisition manager as well as to management on the contractor’s side
because it is these measures which provide the most objective view of project status and an
objective basis for schedule projections. Progress measures can also point to potential
bottienecks (e.g., one CSCI lagging behind the others).

50 CMU/SEI-92-TR-21

Figure 6-10 shows a checklist for specifying progress measures. As with the checklist for
dates, there is space at the top to indicate whether planned and/or actual values are to be
provided and the frequency of reporting. The work units listed are organized by activity.
Note the list of completion criteria at the bottom. Fill in any and all that apply to the units to
be tracked and/or add those that apply to your project.

Schedule Checklist, cont. Page 3 of 3
Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:
Project will record actual progress: Yes No

If Yes, reporting frequency: Waeekly Monthly Other:

Completion
Activities Work Units Tracked | Criterion®
CSCl requirements analysis Requirements documented or specified
CSC! preliminary design Requirements allocated to CSCs
CSCs designed
CSCl detailed design CSUs designed
CSU coding and unit testing Lines coded
Lines unit tested
Number CSUs coded

Number CSUs unit tested
Number lines unit tested

CSCl integration Number of CSUs integrated
Number of lines integrated
CSCl testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”

1 - None specified
2 - Peer review held
3 - Engineering review held
4 - QA sign-off
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled
8 - Entry in employee status report
9 - No known deficiencies

10 - Reviewed by customer

11 - All relevant action items closed

12 -

13 -

Figure 6-10 Schedule Definition Checklist, Progress/Status Information

Appendix D contains an instantiation of the progress checklist shown in Figure 6-10 that is
tailored to DOD-STD-2167A. Appendix D also contains instantiations that are specific to
the descriptions provided in some well-known documents describing sets of software
measures. These include the progress and completion criteria that are called for in the

CMU/SEI-92-TR-21 51

Army’s STEP set of measures [Betz 92], Air Force Pamphlet 800-48 [AFSC 90], and also for
the MITRE set [Schultz 88].

it is worth noting that all three sets have at least one vague completion criterion (e.g.,
design packages closed, being actually and logically connected with all required modules,
no known deficiencies). If you are implementing any of these sets, tailor your own version
of the checklist to better define the completion criteria.

Figure 6-11 shows a generic report form for planned and actual work units completed.

52 CMU/SEI-92-TR-21

Frequency of reporting:
Work unit kind:
Estimated total number of units:

Period Ending date*

Progress Report Form Date:
Periodic Summary by Work Unit Originator:

Project:

CSCl:

Build:

Planned completed units Actual completed

1

-3 RN Lo [1N T-N [A N [V

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

*Ending dates could be preprinted.

Figure 6-11 Report Form for Progress information

CMU/SEI-92-TR-21

53

54

CMU/SEI-92-TR-21

7. Meeting the Needs of Different Users

The effort and schedule measurement framework developed in this document can be used
by a software development or maintenance project at any point in the software lifecycle. At
inception, it can be used to prescribe exactly what the staff-hour and schedule
measurement data will consist of, what data will be recorded, and how the data will be
reported for a given project. The Staff-Hour Definition Checklist and the Schedule
Definition Checklist define and communicate unambiguously what is included in and what
is excluded from the definitions of staff-hours and schedule for the project.

After a project is underway, and even after it is completed, the framework forms can be used
to describe the content of the data that has been collected and reported so it can be
compared with data from other ongoing or completed projects or used to assist in the
estimation and planning for new projects.

Figure 7-1 illustrates tiie inter-relationship of the different forms we have discussed in this
report and how they may be used.

Beginning of During the Life End of Project
Project of the Projc~t
Define Report Monthly [Store for Future Use
Staff-Hour .
Crecis P
In | Ex | Totals Staff-Hour
v Staff-Hour In | Ex | Totals Report Form
v Report Form v
v Total Hours
v v Total Hours Expended
Expended v v
v v
v v v v
Schedul e
ule
" Schedule
Checklist Schedule Checklist
Schedule
Dates Schedule Dates Reporting Form
Progress Meas. Reporting Form Progress Meas.
Completion Criteria Completion Criteria

Figure 7-1 Use of Forms

CMU/SEI-92-TR-21 55

7.1. To Prescribe

At the beginning of a software project, we need to determine and document what the
measurement goals are and what data needs to be collected and reported; this work
enables us to track the project’s status in achieving those goals. To accurately assess the
status from one report to the next or even between different software projects, the
measurement data must be collected and reported consistently, and what the data consists
of must be well-understood.

7.1.1. To specify

Whenever a software measurement program is begun, we can use the Staff-Hour Definition
Checklist and the Schedule Definition Checklist to clearly and unambiguously define what
the staff-hour and schedule measurement data will cover. The “Totals include” and “Totals
exclude” columns in the Staff-Hour Definition Checklist are used to specify what will be
included in the staff-hour measurement data and what will be excluded from it. Any
additional information that you must communicate to avoid ambiguities and
misunderstandings in the definitions, as well as project-specific information, should be
recorded on the Supplemental Information Forms.

The schedule checklist can be used to specify the precise set of completion criteria to be
tracked for milestones and deliverables and to specify the criteria that must be passed
before we can count a given work unit as complete.

7.1.2. To request data elements to be reported

The Staff-Hours Definition Checklist and the Schedule Definition Checklist can aiso be
used to specify what data elements are to be reported. The “Report totals” column in the
Staff-Hour Definition Checklist is used to specify what subtotals of staff-hours are to be
reported. Report requests can be made for different levels of granularity. In the case of
staff-hour measurement data, you can request reports at the system level or broken down
further by each build for a system. The reports may be divided even further by each major
functional element (CSCI) for each build for a system.

For the schedule checklist, the “Completion Criteria Reported” can be used to request the
report of a specific date related to milestones and deliverables or to request a count of work
units completing a specified criteria.

7.2. To Describe

We expect that the Staff-Hour Definition Checklist and Schedule Definition Checklist will be
used initially in conjunction with existing contractually required reports for documenting the
total staff-hours expended and the status of the activities and milestones on a project. The

56 CMU/SEl-92-TR-21

Staff-Hour Definition Checklist and the Schedule Definition Checklist communicate what
attributes and values were included in specific staff-hour and schedule measurements. The
checklists provide a structured approach for dealing with the details that must be resolved
to reduce misunderstandings when reporting staff-hour and schedule data.

7.2.1. Ongoing projects

During the life of a project, an organization's time reporting/accounting and schedule
tracking systems normally capture staff-hour and schedule data. For organizations and
contractors dealing with federal government contracts, staff-hours and schedules are part of
normal government monthly fiscal reports. The Staff-Hours Report Form and the Schedule
Reporting Form can be used to suppiement the formally established procedures for
documenting the staff-hours expended and the activities and milestones achieved thus far
on the project.

By attaching the associated Staff-Hours Definition Checklist and Schedule Definition
Checklist to the reports, we can communicate precisely what is included in or excluded from
the reported data.

7.2.2. After the fact

At the conclusion of a project, it is extremely important to collect and retain the total
resources expended on the project, schedule information both planned and actuals, as well
as a number of other data items. For this data to aid in estimating and planning future
software projects, it must be well understood. The Staff-Hour Definition Checklist and
Schedule Definition Checklist describe and define what attributes were included in and
excluded from the staff-hour and schedule measurement data. We suggest retaining the
following information to aid in estimating and planning future software projects at the
conclusion of the project:

« Staff-Hour Definition Checklist.
» Schedule Definition Checklist.
» Any Supplemental Information Forms for both staff-hours and schedule.

+ The final Staff-Hour Report Form and Schedule Reporting Form that capture the
total staff-hours expended on the project, how the total staff-hours were expended, and
when the milestones and deliverables were planned and actually completed for this project.

CMU/SEI-92-TR-21 57

58

CMU/SEI-92-TR-21

8. Recommendations

This chapter presents our recommendations for using the Staff-Hour Definition Checklist
developed in this document for both ongoing projects and for new projects in the future. it
also presents our recommendation for the definition of staff-hours as well as specific
recommendations for use of the schedule checklist by the acquisition program manager,
the cost analyst, or the administrator of a central measurement database.

8.1. Ongoing Projects

For ongoing projects, we recommend that you use the checklist in conjunction with the
current contractually required status reports to communicate what attributes and values are
included in a specific staff-hour measurement. Use the Supplemental Information Form to
communicate the additional project-specific information that does not lend itself to being
handled via a checklist.

8.2. New Projects

For new projects, our recommendations have been broken down into a number of sub-
elements to enhance communication of the concepts.

At the beginning of all new projects, we recommend the following:
1. Use the Staff-Hour Definition Checklist to create the definition of staff-hours for the
project. Figure 8-1 shows our recommended definition.

2. Construct report specifications for the project via the Staff-Hour Definition Checklist.
The level of detail depends on the needs, goals, and objectives of the organization
and project. Care must be taken that the reports requested do not overburden the
management system.

3. Request status reports on a monthly basis if not otherwise specified by the contract.
4. Specify on the Supplemental Information Form the following:
« Length (in staff-hours) of the standard project work day, work week, and labor
month.
 Levels of management to be included and their description.
« Labor class (Technical analysts and designers or Programmer) responsible for
software design.
« Labor class (Programmer or Test personnel) responsible for initial testing (unit
testing and intermediate functional element and major functional element
integration testing).

CMU/SEI-92-TR-21 59

» Product level (major functional element, customer release, or system) where
various staff-hours are counted.

» Any other information required to avoid ambiguities and misunderstandings.
5. Attach the Supplemental Information Form to the Staff-Hour Definition Checklist.

During the development process, we have two recommendations:

1. Use the Staff-Hour Definition Checklist in conjunction with the current
contractually required status reports to communicate the resources expended on
the project on a periodic basis. If not specified in the contract, we recommend
that these reports be submitted on a monthly basis. The reporting forms
described in Chapter 5 may be used to supplement the status reports.

2 Attach completed copies of the project Staff-Hour Definition Checklist and
associated Supplemental Information Forms to all status reports as a reminder to
remain consistent with the staff-hour definition.

8.3. At the End of All Projects

We recommend the following:

1. Use the Staff-Hour Definition Checklist in conjunction with the current
contractually required status reports to communicate the resources expended on
the entire project.

2. Attach completed copies of the project Staff-Hour Definition Checklist and the
final version of the associated Supplemental Information Forms to the final status
reports.

8.4. Recommended Staff-Hour Definition

Figure 8-1 presents our recommendation for the definition of staff-hours. From this
definition, you can construct a number of report specifications depending on your needs.

Our rationale for our recommended staff-hour definition is as follows:

» Type of Labor. Only direct staff-hours should be collected. Not all organizations are
able to collect the indirect staff-hours associated with a specific software project without
significant manual effort. The customer is most interested in the staff-hours directly
charged to the project or contract.

- Hour Information. All regular time should be collected as well as all recorded
overtime, regardless of whether the overtime is compensated or not. Obviously,
organizations that do not record overtime cannot include overtime staff-hours in
software project staff-hour definitions. However, for projects that require significant

60 CMU/SEI-92-TR-21

amounts of overtime to meet schedules, measurement results can lead to misleading
conclusions if the overtime staff-hours are not included.

- Employment Class. Our definition includes all employment classes in our
recommended definition since any of these types of employees can be responsible for
significant parts of major functional elements, parts of customer releases, or even parts
of entire systems.

Type of Pay. Both salaried and hourly employees can be responsible for significant
parts of a project. Therefore, we have included both types of pay in our recommended
definition.

« Labor Class. Our definition of staff-hours includes all 1abor classes except Level 3
and higher software management. Level 3 and higher level managers frequently
charge overhead funds and oversee several projects simultaneously and thus spend
only small amounts of time on a given project. However, if they charge directly to a
contract, their staff-hours should be included. All other labor classes contribute directly
to the development of a software product; however, those which do not charge directly
will not be included since they do not fall under the Type of Labor definition above
(that is, direct staff-hours only). So some labor classes may still not be included or may
be only partially included (for example, only those support staff members that charge
directly).

» Activity. Our recommended definition includes all activities so that all staff-hours that
contribute to both the development and maintenance of a software product may be
tracked. Obviously, if a given project does not have all of these activities, the staff-hour
definition for that project should exclude them. An example of this is a project where
one contractor has the development responsibility and a different contractor has the
maintenance responsibility.

* Function. Our definition includes all functions at all levels, except for production and
deployment functions and the customer training function at the system level. We
excluded these because they do not contribute to the actual development of a software
product, but to follow-on activities or to other products such as non-developer training
classes.

CMU/SEI-92-TR-21 61

Staff-Hour Definition Checklist

Definition Name: Total System Staff-Hours Date: 7/28/92
For Development Originator:
Page: _1of3
Totals | Totals | Report
Type of Labor include | exclude totals
Direct v
Indirect v
hHour Information
Regular time
Salaried
Hourly
Overtime 4
Salaried
Compensated (paid) [
Uncompensated (unpaid) v
Houry ISESESEERRES HESREREss
Compensated (paid) [%4
Uncompensated (unpaid) v

Employment Class

Reporting organization
Full ime
Part time

Contract
Temporary employees
Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task
Consultants

Labor Ctlass
Software management
Level 1
Level 2
Level 3
Higher
Technical analysts & designers
System engineer
Software engineer/analyst
Programmer
Test personnel
CSCl-to-CSCl integration
Iv&v
Test & evaluation group (HW-SW)
Software quality assurance
Software configuration management
Program librarian
Database administrator
Documentation/publications
Training personnel
Support staff

AYAYAY

..................

ASASATAYAYANANASATAN

Figure 8-1 Recommended Staff-Hour Definition

62

CMU/SEI-92-TR-21

Activity
Development
Primary development activity
Development support activities
Concept demo/prototypes
Tools development, acquisition, installation, & support
Non-delivered software & test drivers
Maintenance
Repair
Enhancements/major updates

Definition Name: Total System Staff-Hours Page: 20f3
For Development
Totals Totals Report
include | exclude totals

ESSES

Product-Level Functions

CSCl-Level Functions (Major Functional Element)
Software requirements analysis
Design
Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) integration and testing
CSCl integration & testing
V&V
Management
Software quality assurance
Configuration management

Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing
Documentation

Build-Level Functions (Customer Release)
(Software effort only)
CSCl-10-CSCl integration & checkout
Hardware/software integration and test
Management
Software quality assurance
Configuration management
Documentation
IV&v

AYAYATASALAS

Figure 8-1 Recommended Staff-Hour Definition, Page 2

CMU/SEI-92-TR-21

63

System-Level Functions

{Software effort only)

System requirements & design
System requirements analysis
System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing
Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees
Customer training

Support

[Definition Name: Total System Stafl-Hours Page: 30f3
For Development
‘Totals “Totals eport
Product-Level Functions continued include | exclude totals

YY) NISERR

Figure 8-1 Recommend Staff-Hour Definition, Page 3

64

CMU/SEI-92-TR-21

8.5. Schedule Recommendations for the Acquisition Program
Manager

8.5.1. Dates of reviews/audits/deliverables

We recommend the following:
» Require planned and actual dates for milestones and deliverables.

» Use the checklist to specify the exact dates to be reported. A good starter set
includes the date of baselining any and all products developed as part of a given
activity, the date of formal review, the date of delivery of interim products to your
office, and the date of formal sign-off.

« Some dates will apply to the entire project. In some cases, there will be dates for
each CSCIl. Track schedule information to at least the CSCI level. For critical
CSCls, you may want to track dates for individual CSCs and CSUs.

» Require that all planned and actual dates be updated monthly. Keep all plans. A
great deal can be learned by looking at the volatility of plans over time and the
extent to which they are based on supporting data (like the progress measures).

8.5.2. Progress measures
» Use the checklist on progress measures to specify the measures to be tracked.

- Require a plan from the contractor showing the rate at which work will be
accomplished. There should be a plan for each CSCI. Require that the plan and
actuals be reported monthly.

« The progress measures are meaningless without objective completion criteria.
Make sure that these criteria can be audited. It is your way of being assured that
progress is real.

« At a minimum, require that the following be planned for and tracked:
« the number of CSUs completing unit test
« the number of lines of code completing unit test
« the number of CSUs integrated
« the number of lines of code integrated

DOD-STD-2167A leaves a huge gap between the critical design review which precedes
coding and the test readiness review which precedes testing for a complete CSCI. If there
are to be problems in meeting integration and test schedules, the earlier you know about it
the better. These simple measures have been found to be extremely useful. Schultz

CMU/SEI-92-TR-21 65

presents an example in which counts of the number of CSUs completing unit test were
plotted weekly [Shultz 88]. A simple linear extrapolation of the plot provided a remarkably
accurate projection of when unit testing would be complete for all CSUs .

« Require that lines of code estimates be updated monthly. A significant increase
(>10%) or a significant change in the composition of code (e.g., decreasing COTS or
reuse) is likely to affect the schedule and should be accompanied by replanning.

» Keep track of problem reports by CSCI during all activities/phases. Those that are
error-prone early are likely to be so throughout development. Closely monitor
integration and testing progress for those CSCls.

8.6. Schedule Recommendations for the Cost Analyst or the
Administrator of a Central Measurement Database

We recommend the following:

« If possible, use the checklist before any data is reported to specify what dates you'd like
to see (e.g., “For all reviews, report the date the review began and the date that the last
document to be included in that review was signed off”).

» Require a filled-out date checklist from anyone submitting schedule data (so that you'll
at least understand and can document what the dates represent).

» For project begin and end dates, make sure that it is clear what activities are included
and whether the dates are planned or actual.

* Be sure to collect all the core measures at the same level. We recommend the CSCI
level. You will need to distinguish between system-level activities (e.g., system
engineering at the beginning and integration and test activities at the end) and CSCI-
level activities. Thus you will have one set of dates for system-level reviews and
deliverables but as many dates as there are CSCls for CSCl-level reviews and
deliverables. If someone reports a single set of dates for the latter, you need to
understand what this date represents (the day that review began for the first CSCI, the
day review began for the last CSCI, or something else.)

66 CMU/SEI-92-TR-21

8.7. Schedule Recommendations for Process Improvement
Personnel

We recommend the following:

« You'll want to know as much about the process as possible but you’re probably limited
to whatever data is already being collected. If possible, gather information on the dates
of all exit criteria associated with reviews and deliverables. This will allow you to track
the detailed sequence of events associated with completing reviews and deliverables.
This can be extremely useful for identifying bottlenecks.

» Gather progress measures as well.

CMU/SE!-92-TR-21 67

68

CMU/SEI-92-TR-21

References

[AFSC 90]

[Baumert 92]

[Betz 92]

[Boehm 81]

[DOD-STD-2167A]

[Grady 87]

[Humphrey 89]

[IEEE 90]

[IEEE 92]

[Jones 86]

(MIL-STD-881B}

[MIL-STD-171]

fRozum 92]

Software Management Indicators (AFSC Pamphlet 800-48). Andrews
Air Force Base, D.C.: Headquarters Air Force Systems Command,
1990.

Baumert, John H. Software Measures and the Capability Maturity
Model (CMU/SEI-92-TR-25). Pittsburgh, Pa.: Software Engineering
Institute, Carnegie Mellon University, 1992.

Betz, Henry P.; & O’Neill, Patrick J. Army Software Test and Evaluation
Panel (STEP) Software Metrics Initiatives Report. Aberdeen, Md.: U.S.
AMSAA, 1992.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs,
N.J.: Prentice-Hall, 1981.

Military Standard, Defense System Software Development (DOD-STD-
2167A). Washington, D.C.: United States Department of Defense,
1988.

Grady, Robert B.; & Caswell, Deborah L. Software Metrics: Establishing
a Company-Wide Program. Englewood Cliffs, N.J.: Prentice-Hall, 1987.

Humphrey, Watts S. Managing the Software Process. Reading, Mass.:
Addison-Wesley, 1989.

IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std 610.12-1990). New York, N.Y.: The Institute of Electrical and
Electronics Engineers, 1990.

Standard for Software Productivity Metrics [draft] (P1045/D5.0).
Washington, D.C.: The Institute of Electrical and Electronics Engineers,
1992.

Jones, C. Programming Productivity. New York, N.Y.: McGraw-Hill,
1986.

Work Breakdown Structures for Defense Material ltems (MIL-STD-
8818, draft). Air Force System Command, 18 February 1992.

Military Handbook Work Breakdown Structure for Software Elements
(MIL-STD-171, draft). US Army CECOM Software Engineering
Directorate, 29 May 1992.

Rozum, James A. Software Measurement Concepts for Acquisition
Program Managers (CMU/SEI-92-TR-11). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1992.

CMU/SEI-92-TR-21 69

[Schultz 88]

Schultz, Herman P. Software Management Metrics (ESD-TR-88-001).
Bedford, Mass.: The MITRE Corporation, 1988.

70

CMU/SEI-92-TR-21

Appendix A: Acronyms and Terms

A.1. Acronyms

C/SCSC cost/schedule control systems criteria
C/SSR cost/schedule status report

CDR critical design review

CCDR contractor cost data reporting

CDRL contract data requirements list
CFSR contract funds status report

cMU Carnegie Mellon University

CPR contract progress report

CsC computer software component
CSCli computer software configuration item
Ccsu computer software unit

DID data item description

DoD Department of Defense

FCA functional configuration audit

FQT formal qualification test

HW hardware

IEEE Institute of Electrical and Electronics Engineers, Inc.
V&V independent verification and validation
OT&E operational test and evaluation
PCA physical configuration audit

PDR preliminary design review

PM project manager

QA quality assurance

SDD system design document

SDR system design review

SEI Software Engineering Institute

SRS software requirements specification
SSR software specification review
SWAP Software Action Plan

S/W software

CMU/SEI-92-TR-21

71

TRR test readiness review

wWBS work breakdown structure
WBS.SW work breakdown structure for software
4GL fourth-generation language

A.2. Terms Used

Attribute - A quality or characteristic of a person or thing. Attributes describe the nature of
objects measured.

Computer software component (CSC) - A distinct part of a computer software
configuration item (CSCIl). CSCs may be further decomposed into other CSCs and
computer software units (CSUs) [DOD-STD-2167A].

Computer software configuration item (CSCI) - A configuration item for software
[DOD-STD-2167A].

Computer software unit (CSU) - An element specified in the design of a computer
software component (CSC) that is separately testable [DOD-STD-2167A)].

Contract work breakdown structure (WBS) - The DoD-approved work breakdown
structure for reporting purposes and its discretionary extension to the lower levels by the
contractor, in accordance with MIL-STD-881B and the contract work statement [MIL-STD-
881B].

Direct staff-hour - The amount of effort directly expended in creating a specific output
product [P1045/D4.0].

Granularity - The depth or level of detail at which data is collected [P1045/D4.0].

Measure - n. A standard or unit of measurement; the extent, dimensions, capacity, etc. of
anything, especially as determined by a standard; an act or process of measuring; a result
of measurement. v. To ascertain the quantity, mass, extent, or degree of something in
terms of a standard unit or fixed amount, usually by means of an instrument or process; to
compute the size of something from dimensional measurements; to estimate the extent,
strength, worth, or character of something; to take measurements.

Measurement - The act or process of measuring something. A result, such as a figure
expressing the extent or value that is obtained by measuring.

Staff-hour - An hour of time expended by a member of the staff [P1045/D4.0].

72 CMU/SEI-92-TR-21

Appendix B: Background

B.1. Origins of the Report

In 1989, the Software Engineering Institute (SEI) began an effort to promote the increased
use of objective measurement in software engineering, project management, and software
acquisitions. As part of this effort, the SEI Measurement Steering Committee was formed to
provide technical guidance and increase public awareness of process measurements.
Based on the advice of the steering committee, two working groups were created: Software
Acquisition Metrics and Software Metrics Definition. This report and the methods in it are
outgrowths of work initiated by the Effort and Schedule Subgroup of the Software Metrics
Definition Working Group. At the SE| Affiliates Symposium in August 1991, a preliminary
draft was released for review and field testing . More than eight hundred copies of the draft
were subsequently distributed. All comments received were addressed. A revised draft
was completed in May 1992, and reviewed by senior industry and government executives
and the SEI Measurement Steering Committee. Suggestions from these reviewers were
evaluated, and the document was modified as required.

B.2. Why Staff-Hours?

Effort is frequently the largest element of cost. Some candidate units for accumulating effort
data are labor-months, staff-weeks, and staff-hours.

The concept of labor-month is well understood. However using labor-months to record and
report effort data presents a number of problems:

» A labor-month does not provide enough granularity when attempting to report in
fractions of a month.

» The number of hours per labor-month varies widely among contractors and within
the government. Each definition may have a different value. It is even possibie
for a contractor to have varying definitions for a labor-month across internal
projects because of government requirements or because the contractor is
working as a subcontractor to another prime contractor. Still, labor-months can
easily be calculated from staff-hours, if preferred.

Another candidate unit for accumulating effort data is staff-weeks. The basic assumption is
" that a calendar week is five working days. However, the issue of holidays falling within a
week or employees working weekends must be addressed when staff-week units are used.

Using staff-hours as the basic unit for recording and reporting effort data overcomes all of
the above problems.

CMU/SEI-92-TR-21 73

In this document, we will use the term “staff-hour” to mean an hour of time expended by a
member of the staff [P1045/D4.0].

One must recognize that no single level of measurement may be applicable to all projects.
For extremely small projects, or those of an exceedingly exploratory nature, staff-hours may
not be meaningful enough to deserve collection. For extremely large projects, the sheer
bulk of staff-hours may conceal vital trends, so other measures of effort may need to be
used. Even these projects may use staff-hours as a basis for the aggregated measurement
used to actually track the project. Thus, we feel that staff-hours will be meaningful for the

vast majority of software projects.

B.3. Source of Staff-Hours

The basic source for obtaining and collecting staff-hour data is an organization’s time
reporting system. Organizations and contractors that deal with federal government
contracts normally collect staff-hours as a part of the contractor’s way of doing business.
They are part of normal government monthly fiscal reports such as the Contract Funds
Status Report (CFSR), Cost/Schedule Status Report (C/SSR), and the Contract Progress
Report (CPR). Since these reports are subject to government audit, contractors have
formally established procedures for collecting the data.

Personnel record their time according to established charge accounts and procedures.
Unless an organization captures the information in an organization’s time reporting system,
the information may not be available.

The granularity of the charge accounts determines the levels or amounts of information that
may be collected about a project. This will vary from project to project, within organizations,
and among organizations.

The basic information that time cards typically contain for each staff-hour is the following:

» Personnel identification: This information may be in the form of the employee’s
name and/or a unique identification number.

» Type of hour information: Regular time or overtime.

» Type of employee: Salaried (exempt) or hourly (non-exempt).

« Date: The day that the work was performed.

» Charge account: Project-specific charge code. Organizations use a number of
coding schemes such as codes that correspond to a specific function performed,

objective worked on, phase of the project, organizational element performing the
work, or some other company or site-specific coding scheme.

For federal government contracts, one way to code charge account numbers is to key them
to elements of work breakdown structures (WBS). One may organize work breakdown
structures by either products or activities. MIL-STD-881B provides guidance on
establishing a Work Breakdown Structure that strongly tavors a product-oriented approach.

74 CMU/SEI-82-TR-21

Within its general guidance, a contractor can extend the contract WBS (tre DoD-approved
work breakdown structure for reporting purposes and its discretionary extension to lower
levels by the contractor) to an appropriate level that satisfies critical visibility requirements
and does not overburden the projects’s management system.

Government contractors may organize their personnel along program, function, natural
work team, or matrix lines to facilitate effective management. When assigning specific work
tasks to the project team, the organizational structure must be linked with the work
breakdown structure. A contractor establishes a system of charge accounts to reflect
specific work tasks and uses the time reporting system to collect work against this
established system of charge accounts.

Figure B-1, extracted from the February 1992 draft of MIL-STD-881B (Figure [I-14 in MIL-
STD-881B), illustrates how a cost management system with job coding and the work
breakdown structure can provide needed detail and visibility without extending the WBS to
extremely low levels.

CMU/SEI-92-TR-21 75

(2661 "a94 0 YeIP ‘'g188-QLS-TIN Woy)
diysuone|oy SEM-10B4U0D-0}-UN020Y-1S0) |-g 81nbiy

T Y
CMS00 399D) -
1SAL ANV — m x
NOLLVYOALNI NOLLYRTOWN00
CMSIOX 90D) tied . NS ‘ o m &
ASH1 GNV BA0O) ‘) " 8
§ ‘g TJ W
SAOVIOVI XIOM INNOJOV ONINEENIONE
1500 L) — M m 2
CASXXX %90 g i | a w -
Noisad ' V! ' w
\ 1
SISATYNY
Y _ | 1500 . ALITVND WS a9~
' LN] [}
LY M]
€ D8 L0 1D
' I] N
) T UN
1 NOLLYZINYDUO TYNOLLONNA
g:dwg .-M-.%Mu% WA ¥ 13AT]
l]
VNNBLNY oo € TIATT
(1 |
) |
ONINIVIL yvavy T13A3T
(|]
/ |

TOUINOO T14 [13A31

CMU/SEI-92-TR-21

76

Appendix C: Using Measurement Results—
lllustrations and Examples

In this appendix, we illustrate a few of the ways in which we have seen that effort data has
been used to help plan, manage, and improve software projects and processes. Our
purpose is not to be exhaustive, but rather to highlight some interesting uses that you may
find worth trying in your own organization. We also want to encourage organizations to
seek other new and productive ways to put effort measures to work, and we would very
much like to hear from those who succeed.

Information pertaining to staff-hour expenciture enables you to obtain insight into the
development process as well as how resource usage compares to the planned values.
You can use effort measures to display expended resources over time with the intent of
providing current status and forecasting actual effort expended at completion.

Because effort measures can display the staff-hour expenditures per time period, managers
can track trends in the effort expended. You can use effort measures to reflect actual versus
planned staff-hours expendea for the current and past time period. Effort measures help
you address the following questions:

» Is the rate at which effort is being expended going to overrun the planned budget?
+ Is enough effort being planned and applied to the project to achieve the desired
schedule?

The following sections contain some simple examples using staff-hour information.

C.1. Noncumulative Effort Distribution Example

Some organizations use effort distribution graphs to track the resources expended (staff-
hours) per time period. When you collect actual expended staff-hours monthly, or some
other periodic time period, and compare them to the previously estimated staff-hours for that
period, you can gain some insight into the development process.

The following sections will discuss effort distribution graphs per month and cumulative
graphs.

C.1.1. Effort profile for total staff-hours only

Figure C-1 illustrates the use ot the checklist to specify a definition of staff-hours and the
collection of staff-hours for an entire project at the project or system level only. It
communicates unambiguously what has been included in and excluded from the
measurement of staff-hours.

CMU/SE!-92-TR-21 77

Staff-Hour Definition Checklist

Definition Name: Example: Total staff-hours Date: 6/27/92
for development, report at System Originator: SEI
ievel only. Page: 10f3
Totals Totals Thport
Type of Labor include | exclude totals
Direct v
Indirect v

[Hour Information

Regular time
Salaried
Hourly

Overtime
Salaried
Compensated (paid)
Uncompensated (unpaid)

Hourly
Compensated (paid)
Uncompensated (unpaid)

.....................

Employment Class

Reporting organization
Fufl time
Part tme

Contract
Temporary employees
Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task
Consultants

Labor Class
Software management
Level 1
Level 2
Level 3
Higher
Technical analysts & designers
System engineer
Software engineer/analyst
Programmer
Test personnel
CSCl-to-CSCl integration
vav
Test & evaluation group (HW-SW)
Software quality assurance
Software configuration management
Program librarian
Database administrator
Documentation/publications
Training personnel
Support staff

AYAVAY

v
v
v
[
v
(4
v
v
v
|4

Figure C-1 Example of a Completed Staff-Hour Definition Checklist

78

CMU/SEI-92-TR-21

Definition Name: Example: Total stafi-hours

for development, report at System

Page: 20t3

Maintenance
Repair
Enhancements/maijor updates

level only.
Totals “Totals Report
include | exclude totals
Activity
Development
Primary development activity v
Development support activities [RRIINRINNI, 1SRRRRRRRR
Concept demo/prototypes v
Tools development, acquisition, installation, & support [
Non-delivered software & test drivers v

Product-Level Functions

CSCl-Level Functions (Major Functional Element)
Software requirements analysis
Design
Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) integration and testing
CSCl integration & testing
Vav
Management
Software quality assurance
Configuration management

Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing
Documentation

Build-Level Functions (Customer Release)
(Software effort only)
CSCli-to-CSCl integration & checkout
Hardware/software integration and test
Management
Software quality assurance
Configuration management
Documentation
IVav

AVASAYASASASANA

AYAYAYAY

AYAYAYAYAYAS

Figure C-1 Example of a Completed Staff-Hour Definition Checklist, Page 2

CMU/SEI-92-TR-21

79

System-Level Functions

(Software effort only)

System requirements & design
System requirements analysis
System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing
Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees
Customer training

Support

Definition Name: Example: Total staff-hours Page: 30f3
for development, report at System
level only.
Totals Totals Report
Product-Level Functions continued include | exclude totals

Figure C-1 Example of a Completed Staff-Hour Definition Checklist, Page 3

80

CMU/SEI-92-TR-21

You can display the staff-hours expended per time period as an x-y line graph with both
actual and planned curves on the same graph. The x-axis shows the calendar time period
increments and the y-axis shows staff-hours expended. Showing the actual staff-hours
expended per time period illustrates the spikes and drops in the effort expended on the
contract. Any significant deviations between planned and actual expenditures can be used
as an indicator for further investigation of possible causes.

Even if only total staff-hours expended by the project for the current time period are
available, you can gain some insight by plotting the actual and planned total staff-hours on
the same graph as Figure C-2 illustrates.

The plan curve typically builds up slowly through the early portion of the development effort,
which is devoted to requirements definition and analysis and design, peaks around
integration and test, and shows an orderly decrease through the latter part of the
development, which is devoted to system testing. For maintenance projects, on the other
hand, the curve tends to more flat (level-loaded).

In Figure C-2 you can see that in the early months, more effort was expended than planned.
This could be an indicator that staff was allocated to this project before they could be
effectively utilized or that more analysis effort was required than estimated. To obtain a
clear view of the progress implications, staff-hours must be correlated with measures of size
and schedule.

Actual »
1 2 -+ ‘ 5 .\i
104 44— Planned
Staff- o]
Hours in 6
Thousands]
4
2

|] —_
[
L [we 3
T T T T lh..'

6 7 8 9 101112

Reporting Periods

Figure C-2 Example of an Effort Profile for Total System Expenditure by Month

If you add the monthly staff-hour expenditures, you can obtain a cumulative effort profile.
The cumulative effort profile can be displayed as an x-y line graph with both actual and plan
curves on the same graph, as described previously, to determine if the number of actual
staff-hours expended corresponds with the number of staff-hours planned for a particular

CMU/SEI-92-TR-21 81

point in time. The x-axis shows calendar time period increments and the y-axis show total
staff-hours expended. For development efforts, the graph usually resembles a flattened S-
curve as in Figure C-3. The flattened S-curve reflects a smaller staff early in the project (a
smaller slope in the curve), a larger staff during the heart of the project (a steeper slope in
the curve), and a reduction in staff toward the end of the project (another smaller slope in

the curve).

70
T s W e B s B

"

d

Actual

Cumulative 20
Staff-Hours 40 g
in 30 f 4——— Planned
Thousands 20 /g
10 '

ode

L L)
L] ¥ L3

7 8 9 10 11 12

-
[\V]

W -
P
[, I
o +

Reporting Periods

Figure C-3 Example of a Cumulative Effort Profile

The project manager can compare the total number of staff-hours planned to be expended
to the total number of staff-hours actually expended for a particular point in time. In the
example shown, one can readily see that more effort is being expended than planned.
Analyzing the relationship of actual staff-hours being expended to the planned staff-hours

can do the following:

« Provide some early indicators of potential problems. For example, if the actual
expenditure is starting to deviate above or below the planned expenditure, this
should be an indicator for management to ask some pointed questions as to the
cause of the deviation.

» Assist the project manager in judging whether the planned amount of effort will be
sufficient to complete the project.

C.1.2. Effort profile for each build and CSCI

You can obtain additional insight into the development process by requesting staff-hour
utilization, not just for the entire project, but also for each build, or customer release and
each CSCI (major functional element) within each build or release. In Figure C-4 we show
only the specific entries of the checklist required to specify the collection of staff-hours for
the entire project, for each build, and for each CSCI. The remainder of the checklist is

82 CMU/SEI-92-TR-21

each CSCI (major functional element) within each build or release. In Figure C-4 we show
only the specific entries of the checklist required to specify the collection of staff-hours for
the entire project, for each build, and for each CSCI. The remainder of the checklist is
exactly as Figure C-1 shows. Again, use the checklist to communicate unambiguously what
has been included in and excluded from the measurement of staff-hours.

Totals Totals | Report
i totals

Product-Level Functions

CSCl-Level Functions (Major Functional Element)

Build-Level Functions (Customer Release)

System-Level Functions

Figure C-4 Example of a Staff-Hour Definition Checklist for System, Builds, and CSCls

For illustrative purposes, we will use a system development effort consisting of one build
with two CSCls. Just as discussed in the previous section, the staff-hours expended per
time period can be displayed in an x-y line graph with both actual and plan curves on the
same graph. We show the calendar time period increments on the x-axis and staff-hours
expended on the y-axis.

Figures C-5 and C-6 illustrate the planned effort profile for each CSCI for each reporting
period and the planned cumulative effort profile for the total system respectively.

14

10 Planned ;'—T)
Staff- CSCIA ¢ Planned
Hours in ¢ CSCIB
Thousands :

0 I. - .‘
12345678 9101112131415

Reporting Periods

Fiyure C-5 Example of a Planned Effort Profile by CSCI

CMU/SEI-92-TR-21 83

140 ¢
'8 v B s B8 sannc |
120 me
0 .,
100 + Planned j/
Cumulative g L 15101 Effort -
Staff-Hours /
in Thousands 60 + 2
40 + f/
w
20 ’}"{‘
0 mea¥ey]
1 2 3 4 5 6 7 8 9101112131415
Reporting Periods

Figure C-6 Example of a Planned Cumulative Effort Profile

From the monthly status reports, you can extract and plot the total effort expended on this
project as well as the effort expended on each CSCI on the same graph as the planned
expenditures. Figure C-7 plots the actual cumulative effort on the same graph as the
planned cumulative effort for our example system development effort.

140 7
120 1 a—_
100 +

Cumulative g, 1 &— Planned

Staff-Hours
in Thousands 60 TActual Y

40 ¢

20 1
1 2 3 45 6 7 8 91011121314

L

'l 'l od
¥ ¥ L]

0

Reporting Periods

Figure C-7 Example of a Planned vs. Actual Cumulative Effort Profile

84 CMU/SEI-92-TR-21

By just examining Figure C-7 you could conclude that the over-expenditure in the early
months of this effort has been corrected.

Since additional information is available, you can construct actual effort profile plots for
each CSCI, comparing the planned expenditure of effort with the actual expenditure.

14~ Actual Planned
1 2 1 St
10+

Staff-Hours 8 +
in Thousands ¢ ./

C
[l [l [l 2
T 1 T T T

1 2 3 45 6 7 8 91011121314
Reporting Periods

Figure C-8 Example of a Planned vs. Actual Expenditure for Each CSCI

Figure C-8 provides more details indicating that the development for both CSCls may be in
trouble—one CSCI by expending resources above the planned amount and the other CSCI
by significantly underexpending. Any significant deviations between planned and actual
expenditure can be used as an indicator for further investigation for possible causes.

C.2. Productivity Trend Example

A software development manager might desire a specific subset of the CSCl-level staff-
hour information to be able to derive metrics for the development portion of the software life
cycle. In Figure C-9 we show the additional entries to the checklist in Figure C-4 to specify
the coliection of staff-hours for detailed design, code, and development testing. Figure C-9
shows only the new entries. Again the checklist is used to communicate unambiguously
what has been included in and what has been excluded from the measurement of stafi-
hours.

CMU/SEI-92-TR-21 85

Totals Totals Report
include exclude totals

Product-Level Functions

CSCl-Level Functions (Major Functional Element)

Software requirements analysis

Design

Preliminary design

Detailed design

Code & development testing

Figure C-9 Example of a Productivity Staff-Hour Definition Checklist

You can calculate productivity rate by dividing the source line count (size measurement) for
a given CSCI and build by the sum of these individual staff-hour subtotals for the same
CSClI and build. Such a productivity rate can be used in estimating development costs and
schedules for subsequent builds.

You can calculate a productivity rate for an entire system of multiple CSCls as well. Here
the sum of the source line counts for all CSCis for a given build is divided by the sum of the
individual staff-hour subtotals listed above for all CSCls for the same build. When you
calculate this metric for each of the builds of a system, trends can be determined and used
in the planning of future software development projects. An x-y line graph, such as Figure
C-10 shows, can be drawn from this data. A negative trend in a productivity rate can alert
the software development team to determine the cause of the lowered productivity and, if
necessary, revise their software development process to counter the trend.

86 CMU/SEI-92-TR-21

Perform Causal
Analysis

Rate

Build 1 Build 2 Build 3 Build 4 Build 5

Builds

Figure C-10 Example of a Productivity Trend

CMU/SEI-92-TR-21 87

88

CMU/SEI-92-TR-21

Appendix D: Tailoring Schedule Checklist for
Progress or Status Information

D.1. MIL-STD-2167A

Figure D-1 shows a tailoring of the generic progress checklist shown in Figure 6-10, geared
specifically to the terminology and work units described in MIL-STD-2167A. The notations
in the parentheses refer to the paragraph numbers of the relevant Data Item Description
(DID).

CMU/SEI-92-TR-21 89

Schedule Definition Checklist (cont.)

Part B:

Project will record planned progress:
If Yes, reporting frequency:
Project will record actual progress:
If Yes, reporting frequency:

Deliverable Product Milestones

Progress/Status Information

Yes No
Weekly Monthly Other:
Yes No
Woeekly Monthly Other:
Work Unit

Work Units to Be Tracked

SZStemlsyegmem Specification System capabilities specified (3.2.1.X.Y.2)
ystem/Segment Design Document System requirements allocated (4.2.X)

System internal interfaces specified (4.4.X)

Interface Requirements Specification Interface requirements specified (3.X.Y)

Interface Design Document

Interface requirements designed (3.X.Y)

Software Requirements Specification(s)

Engineering requirements specified (3.X[.Y])

Software Preliminary Design Document(s)

CSCs designed (3.2.X[.Y])

Software (Detailed) Design Document(s)

Software Test Description(s) (cases)

Software Test Description(s) (procedures)

Source Code

Software Test Report

CSUs designed (4.X.Y.2)

CSCI data elements/files defined (5, 6)
FQTs described (4.X.Y.1-5)

FQT procedures defined (4.X.Y.6)
CSUs code-inspected

CSUs unit-tested

FQT test case results described (4.X.Y.2)

*Key to indicate “Work Unit Completion Criterion®:

1 - None specified
2 - Peer reviewed
3 - Engineering review held
4 - QA sign-oft
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlied
8 - Entry in employee status report
9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed

Page 3 of 3

Completion Criterion*

Figure D-1 Schedule Definition Checklist, Progress/Status Information (MIL-STD-2167A)

90

CMU/SEI-92-TR-21

D.2. ARMY STEP Set of Measures

Figure D-2 shows a tailoring of the generic progress checklist shown in Figure 6-10, geared
specifically to the progress measures and completion criteria called for in the Army's STEP

set of measures [Betz 91].

Page 30of 3
Schedule Definition Checklist (cont.)
Part B: Progress/Status Information
Project will record planned progress: Yes v No
if Yes, reporting frequency: Weekly Monthly v Other:
Project will record actual progress: Yes v No
If Yes, reporting frequency: Weekly Monthly v Other:
Work Unit

Activities Work Units Tracked Completion Criterion*
CSCl requirements analysis Requirements documented or specified
CSCil preliminary design Requirements allocated to CSCs
CSCs designed
CSClI detailed design CSUs designed 10
CSU coding and unit testing Lines coded
Lines unit tested
Number CSUs coded
Number CSUs unit tested 12
Number lines unit tested
CSCl integration Number of CSUs integrated 13
Number of lines integrated
CSCl testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion™
1 - None specified
2 - Peer reviewed
3 - Engineering review held
4 - QA sign-oft
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled
8 - Entry in employee status report
9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed
12 - All test cases completed with no defects
13 - CSUs actually and logically connected with all required modules

Figure D-2 Schedule Definition Checklist, Progress/Status Information (STEP)

CMU/SEI-92-TR-21

91

D.3. Air Force Pamphlet 800-48

Figure D-3 shows a tailoring of the generic progress checklist shown in Figure 6-10, geared
specifically to the progress measures and completion criteria called for in the progress
measures described in Air Force Pamphlet 800-48 [AFSC 90].

Page 3 of 3
Schedule Definition Checklist (cont.)
Part B: Progress/Status Information
Project will record planned progress: Yes v No
If Yes, reporting frequency: Weekly Monthly v Other:
Project will record actual progress: Yes __ v No
i Yes, reporting frequency: Weeky _ Monthly v Other:
Work Unit
Activities Work Units Tracked Completion Criterion®*
CSCl requirements analysis Requirements documented or specified
CSCl preliminary design Requirements allocated to CSCs
CSCs designed
CSCl detailed design CSUs designed 9
CSU coding and unit testing Lines coded
Lines unit tested
Number CSUs coded
Number CSUs unit tested 9
Number lines unit tested
CSCl integration Number ot CSUs integrated 11
Number of lines integrated
CSCil testing Number of tests passed 11
*Key to indicate "Work Unit Completion Criterion":
1 - None specified
2 - Peer reviewed
3 - Engineering review held
4 - QA sign-off
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled -
8 - Entry in employee status report
9 - No known deficiencies
10 - Reviewed by customer
11 - All relevant action items closed

Figure D-3 Schedule Definition Checklist, Progress/Status Information
(AF Pamphlet 800-48)

92 CMU/SEI-92-TR-21

D.4. MITRE

Figure D-4 shows a tailoring of the generic progress checklist shown in Figure 6-10,
geared specifically to the progress measures and completion criteria called for in the MITRE

set [Schultz 1988].

*Key to indicate “Work Unit Completion Criterion™:
1 - None specitied
2 - Peer reviewed
3 - Engineering review heid
4 - QA sign-off
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled
8 - Entry in employee status report
9 - No known deficiencies

10 - Reviewed by customer
11 - All relevant action items closed

12 - Passed CSU test
13 - Design packages closed

Page 30f 3
Schedule Definition Checklist (cont.)
Part B: Progress/Status Information
Project will record planned progress: Yes v No
if Yes, reporting frequency: Weekly Monthly v Other:
Project will record actual progress: Yes v No
If Yes, reporting frequency: Weekly Monthly v Other:
Work Unit
Activities Work Units Tracked Completion Criterion*
CSCl requirements analysis Requirements documented or specified 1
CSCl preliminary design Requirements allocated to CSCs 1
CSCs designed 1
CSCl detailed design CSUs designed 3,13
CSU coding and unit testing Lines coded
Lines unit tested
Number CSUs coded
Number CSUs unit tested 12,7
Number lines unit tested
CSCl integration Number of CSUs integrated 1
Number of lines integrated
CSCl testing Number of tests passed 1

Figure D-4 Schedule Definition Checklist, Progress/Status Information (MITRE)

CMU/SEI-92-TR-21

93

94

CMU/SEI-92-TR-21

Appendix E: Checklists and Forms for
Reproduction

The following figures are repeated in this appendix in reproducible form. We have removed
figure numbers, page numbers, and document footers so that you can copy and use tre
pages for your own purposes.

Qriginal Page Number

Effort Information
Figure 2-3 Staff-Hour Definition Checklist 8
Figure 4-1 Supplemental Information Form 31
Figure 5-2 Reporting Form for CSCI Development 35

Reporting Form for each Build

System Development Reporting Form
Schedule Information
Figure 6-1 Schedule Definition Checklist, Page 1 39
Figure 6-2 Schedule Definition Checklist, Page 2 40
Figure 6-10 Schedule Definition Checklist, Progress/Status Information 51

Report forms on pages 43-45 are tailored to a specific example. These are included as an
example of tailoring.

Figure 6-5 Report Form for System-Level Milestone Dates 45
Figure 6-6 Report Form for CSCI-Level Milestone Dates 46
Figure 6-7 Report Form for System-Level Deliverables 47
Figure 6-8 Report Form for CSCl-Level Deliverables 48
Figure 6-11 Report Form for Progress Information 53

CMU/SEI-92-TR-21 95

Staff-Hour Definition Checklist

Definition Name: Date:
Originator:
Page: 10f3
Totals Totails Report
Type of Labor include exclude totals
Direct
Indirect

Hour Information

Regular time
Salaried
Hourly

Overtime
Salaried
Compensated (paid)
Uncompensated (unpaid)

Hourly
Compensated (paid)
Uncompensated (unpaid)

Employment Class

Reporting organization
Full time
Part time

Contract
Temporary employees
Subcontractor working on task with reporting organization
Subcontractor working on subcontracted task
Consultants

Labor Class
Software management
Level 1
Level 2
Level 3
Higher
Technical analysts & designers
System engineer
Software engineer/analyst
Programmer
Test personnel
CSCl-to-CSCl integration
IV&V
Test & evaluation group (HW-SW)
Software quality assurance
Software configuration management
Program librarian
Database administrator
Documentation/publications
Training personnel
Support staff

Definition Name: Page: 20f3

Totals Totals Report

Activity
Development
Primary development activity
Development support activities
Concept demo/prototypes
Tools development, acquisition, installation, & support
Non-delivered software & test drivers
Maintenance
Repair
Enhancements/major updates

Product-Level Functions

CSCl-Level Functions (Major Functional Element)
Software requirements analysis
Design

Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) integration and testing
CSCl integration & testing
Iv&v
Management
Software quality assurance
Configuration management
Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing
Documentation

Buiid-Level Functions (Customer Release)
(Software effort only)
CSCl-to-CSCl integration & checkout
Hardware/software integration and test
Management
Software quality assurance
Configuration management
Documentation
vav

Definition Name: Page: 30f3

Product-lLeve! Functions continued Totals Totals Report
include exclude totals

System-Level Functions

(Software effort only)

System requirements & design
System requirements analysis
System design

Software requirements analysis

Integration, test, & evaluation
System integration & testing
Testing & evaluation

Production and deployment

Management

Software quality assurance

Configuration management

Data

Training
Training of development employees
Customer training

Support

Supplemental Information Form
Staff-Hours Measurement

Definition Name:

Project Name:

Hour Information
Indicate the length of the following:
Hours

Standard work day
Standard work week
Standard labor month

Labor Class Information
Describe the typical responsibilities and duties for the labor categories indicated.

Labor Class Description
Software Management

Level 1

Level 2

Level 3

Level 4

Technical analysts and designers
Programmer
Test personnel

Others

Product-Level Functions
Describe at what level(s) (major functional element, customer release,
and/or system) staff hours are counted for the functions indicated.

Eunction Level
Management

Software quality assurance
Configuration management
Documentation

Other

Direct Statf-Hours Report
CSCI (Major Functional Element) Development

Software requirements analysis
Design
Preliminary design
Detailed design
Code & development testing
Code & unit testing
Function (CSC) int. & testing
CSCl integration & testing
IV&V
Management
Software quality assurance
Configuration management
Documentation
Rework
Software requirements
Software implementation
Re-design
Re-coding
Re-testing

Documentation

CSCI (Major Functional Elements) Level Functions

Excluded
Included Don’t Know

OOOOOOOOOOO000000000
EINERRNENEREENEEEEE
AENRNNNNNRRNEERNEREED

System Name: Build ID:
CSCl Identification: Version :
Direct Staff-Hours
Total Compensated Uncompensated
Regular Time = [1L]
Overtime = l I 11]
Total = | JL 1L]
Work Performed Time Frame
Beginning Date: Ending Date:

Staff-Hours
(it requested)

Direct Staff-Hours Report
Build (Customer Release) Development

System Name: Build ID:
Direct Staff-Hours
Total Compensated Uncompensated
Regular Time = | 11 |
Overtime = | 11 IR |
Total = [| | | |
Work Performed Time Frame
Beginning Date: Ending Date:

CSCls Associated with This Build:

CSCliID Version

Build (Customer Release) Level Functions

Excluded Staff Hours

Inciuded Don’t Know (if requested)
CSCI-to-CSCl integration & checkout [_]

Hardware/software int. and test

a0
L]
NN

Management

Software quality assurance

Configuration management

Documentation

V&V

pr— pr— g— g—
e —
ey e P g—
o } SN | SRR
ey pr— r— o
el —

Direct Staff-Hours Report
System Development

System Name:

Build ID:

Total

Direct Staff-Hours

Compensated Uncompensated

Regular Time = |

Overtime = [J [1 F |
Total = | 11 | | |
Work Performed Time Frame
Beginning Date: Ending Date:

Builds Associated with this System:

Builds

Page 1-2

Direct Staff Hours Report
System Development

System Identification: Version:
System Level-Functions Excluded Staff Hours
included Don’t Know (If requested)
System requirements and design L1 U]

System requirement analysis

System design

Software requirements analysis

O

Integration, test, and evaluation

System integration & testing

—1—1—‘-——
SN S) - -

Testing and evaluation
Production and deployment
Management
Software quality assurance
Data
Training

Training of development employees

Customer training

000000000
IERNNERREENEEE

ANRNNN

Support

Schedule Checklist Date:

Part A: Date Information Originator:
Page 10f3

Project will record planned dates: Yes No

i Yes, reporting frequency: Weekly Monthly Other:
Project will record actual dates: Yes No

If Yes, reporting frequency: Weekly Monthly Other:

Number of builds
Repeat Relevant dates
Include Exclude | each build reported”

System requirements review
System design review

Software specification review

Preliminary design review

Critical design review

Code complete

Unit test complete

CSC integration and test complete

Test readiness review

CSClI functional & physical configuration audits

Preliminary qualification test

Formal qualification test

Delivery & instaliation

Other system-level: Delivery to prime contractor

*Key to indicate “relevant dates reported” for reviews and audits

1 - Internal review complete
2 - Formal review with customer complete
3 - Sign-off by customer
4 - All high-priority action items closed
5 - All action items closed
6 - Product of activity/phase placed under configuration management
7 - Inspection of product signed off by QA
8 - QA sign-off
9 - Management sign-oft

10 -

11-

Page 2 of 3

Part A: Date Information (cont.)

Repeat Relevant dates
Deliverable Products Include | Exclude | each build reported®

System-Level ! ! R I e
Preliminary system specification
System/segment specification
System/segment design document
Preliminary interface requirements spec.
Intertace requirements specification
Preliminary interface design document
Interface design document

Software development plan

Software test plan

Software product specification(s)

Software user's manual

Software programmer’s manual

Firmware support manual

Computer resources integrated support doc.
Computer system operator's manual
CSCl-Level BRI B
Preliminary software requirements spec(s)
Software requirements specification(s)
Software preliminary design document(s)
Software (detailed) design document(s)
Software test description(s) (cases)
Software test description(s) (procedures)
Software test report(s)

Source code

Software development files

Version description document(s)

*Key to indicate “relevant dates reported” for deliverable products
1 - Product under configuration control
2 - Internal delivery
3 - Delivery to customer
4 - Customer comments received
5 - Changes incorporated
6 - Sign-off by customer

8-

Schedule Checklist, cont. Page 3 of 3
Part B: Progress/Status Information

Project will record planned progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:
Project will record actual progress: Yes No
If Yes, reporting frequency: Weekly Monthly Other:
Completion
Activities Work Units Tracked | Criterion*
CSCl requirements analysis Requirements documented or specified
CSCl preliminary design Requirements allocated to CSCs
CSCs designed
CSCI detailed design CSUs designed
CSU coding and unit testing Lines coded
Lines unit tested
Number CSUs coded
Number CSUs unit tested
Number lines unit tested
CSCl integration Number of CSUs integrated
Number of lines integrated
CSCl testing Number of tests passed

*Key to indicate “Work Unit Completion Criterion”

1 - None specified
2 - Peer review held
3 - Engineering review held
4 - QA sign-off
5 - Manager or supervisor sign-off
6 - Inspected
7 - Configuration controlled
8 - Entry in employee status report
9 - No known deficiencies

10 - Reviewed by customer

11 - All relevant action items closed

12 -

13-

Schedule Reporting Form Date:
Date Information Originator:
System-Level Information Project:

Period ending:

Milestones, Reviews, and Audits* Planned Changed Actual
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formai qualification test

3 - Sign-off by customer
Delivery to prime contractor

3 - Sign-off by customer

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form
Date Information
System-Level Information

Milestones, Reviews, and Audits*
Contract award/project start
Preliminary qualification test

3 - Sign-off by customer
Formal qualification test

3 - Sign-off by customer
Delivery to prime contractor

3 - Sign-off by customer

Date:
Originator:

Project:
Period ending:

Planned Changed Actual

*Only those completion criteria specitied on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form
Date Information
System-Level Information

Deliverable Products*

Preliminary interface design document
3 - Delivery to customer

Interface design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

Date:
Originator:

Project:

Period ending:

Planned Changed

Actual

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form
Date Information
System-Level information

Deliverable Products*

Preliminary interface design document
3 - Delivery to customer

interface design document
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software development plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test plan
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Computer system operator's manual
1 - Product under configuration control
6 - Sign-off by customer

Date:
Originator:
Project:

Period ending:

Planned

Changed Actual

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column if Planned date has changed since last reporting.

Schedule Reporting Form
Date Information
CSCl-Level Information

Deliverable Products*

Preliminary software requirements specification
3 - Delivery to customer

Software requirements specification
1 - Product under configuration controi
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software preliminary design document
1 - Product under configuration controt
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software (detailed) design document
1 - Product under configuration controi
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (cases)
1 - Product under configuration controi
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test description (procedures)
1 - Product under configuration control
3 - Delivery to customer
5 - Changes incorporated
6 - Sign-off by customer

Software test report
3 - Delivery to customer
7 - IV&V sign-off

Source code
1 - Product under configuration control
2 - Ir*ernal delivery
3 - Delivery to customer
6 - Sign-off by customer
7 - IV&V sign-off

Date:
Originator:
Project:

Period ending:
CSCl:
Build:

Planned Changed Actual

*Only those completion criteria specified on the checklist appear below each deliverable.
Enter a check mark in the “Changed” column it Planned date has changed since last reporting.

Progress Report Form
Periodic Summary by Work Unit

Frequency of reporting:
Work unit kind:
Estimated total number of units:

Period Ending date” Planned completed units

Date:

Originator:

Project:

CSCl:

Build:

Actual completed

—

O IN O O s W I

-
o

pre
o

-
—h

-
N

-
w

-
E-N

iy
o

-
[2]

e
~

-
[o 2]

-
(=]

N
o

N
—

N
N

[*]
w

N
H

*Ending dates could be preprinted.

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
Unclassified None
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited
N/A
4. PERFORMING ORGANIZATTON REPORT NUMBER(S 5. MONITORING ORGANIZATION REPORT NUMBER(S)
CMU/SEI-92-TR-21 ESC-TR-92-021
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Software Engineering Institute S(‘féll"’h“b“’ SEI Joint Program Office
6¢c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Carnegie Mellon University ESC/AVS
Pittsburgh PA 15213 Hanscom Air Force Base, MA 01731
8a. gﬁgﬂi orwglg‘mclsmNsomG 3 ngaCb!i:e ?YMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ANIZATE . . F1962890C0003
SEl Joint Program Office ESD/AVS
8¢. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
Carnegie Mellon University PROGRAM PROJECT TASK WORK UNIT
Pittsburgh PA 15213 ELEMENT NO No. No NO.
63756E N/A N/A N/A
11. TITLE (Include Security Classification)

Software Effort & Schedule Measurement: A Framework for Counting Staff-Hours and Reporting Schedule Info.

12. PERSONAL AUTHOR(S)

Wolfhart B. Goethert, Elizabeth Balley, Mary B. Busby, et al
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yz, Mo., Day) 15. PAGE COUNT
Final FROM TO September 1992 114

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse of necessary and identify by block numbes)

FIELD GROUP SUB. GR. Stafi-hours, software development effort, software metrics, software
measurement, software development schedule

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This report contains guidelines for defining, recording, and reporting staff-hours. In it we develop a framework
to construct operational methods for reducing misunderstandings in measurement results. We show how to
employ the framework to resolve conflicting user needs, and we apply the methods to construct specifications
for measuring staff-hours. One aspect concerns the dates of project milestones and deliverables, and the sec-
ond concerns measures of progress. Examples of forms for defining and reporting staff-hour and schedule
measurements are illustrated.

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED SAME AS RPTDTIC USERS B Unclassified, Unlimited Distribution
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (Include Area Code) 22¢. OFFICE SYMBOL
John S. Herman, Capt, USAF (412) 268-7631 ESC/AVS (SEI)
DD FORM 1473, §3 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS

